GeForce RTX 3060 12GB vs Intel Arc B570

Winner:
Intel Arc B570
Main Difference:
Newer architecture and AV1 encoding support for a lower launch MSRP
Page Summary:
Intel Arc B570 provides superior value with its modern Battlemage architecture and AV1 encoding for a $219 MSRP, whereas the GeForce RTX 3060 12GB remains capped at a $329 MSRP and lacks modern encoding hardware and frame generation support.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 3060 12GB

MSRP:
$329
See Current Price
Spec Sheet:
Core Count:
3584
Thread Count:
Base Clock:
1320 MHz
Boost Clock:
1777 MHz
Integrated Graphics:
VRAM:
12.0 GB
L3 Cache:
12.0 GB
TDP:
170 W
Socket:
192 bit
Bus Width:
192 bit
Release Date:
2021-01-12
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
30.7
27.6
1440p
24.4
20.7
4K
16.3
16.3
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Intel Arc B570

MSRP:
$219
See Current Price
Spec Sheet:
Core Count:
2304
Thread Count:
Base Clock:
2500 MHz
Boost Clock:
2500 MHz
Integrated Graphics:
VRAM:
10.0 GB
L3 Cache:
10.0 GB
TDP:
150 W
Socket:
160 bit
Bus Width:
160 bit
Release Date:
2025-01-16
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
30.3
30.3
1440p
24.7
23.9
4K
15.3
9.6
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 3060 12GB
Gaming Analysis:

The GeForce RTX 3060 12GB functions as a high-headroom choice for standard high-definition play that manages to maintain steady performance even when stepping up to slightly higher resolutions. While the raw hardware speed targets a middle-tier experience, the inclusion of a 12GB VRAM buffer on a 192-bit bus acts as a meaningful safety net against the stuttering and texture pop-in that can occur with cards limited to 8GB of memory. You can generally keep texture settings high without the engine struggling to manage high-resolution assets or hitting a hard ceiling during memory-heavy scenes.

  • Standard High-Definition Gaming: This is where the card feels most natural and responsive. It handles modern titles with a fluidity that keeps gameplay smooth and avoids the heavy, sluggish feeling typical of entry-level hardware.
  • Higher Resolution Performance: Moving beyond the basics causes the chip to lose momentum, though it remains functional for several types of games. You will likely rely on DLSS 2 to maintain a steady visual flow, as fast-motion scenes can begin to feel less snappy when the hardware is pushed to its architectural limits.
  • VRAM and Textures: The 12GB of GDDR6 memory is a standout feature for this tier of hardware. This generous capacity allows for larger texture packs and more complex mod lists than what is typically possible on cards with narrower memory limits, ensuring that frame times stay more consistent during long sessions.
  • Ray Tracing Capability: While the Ampere architecture includes 28 Ray Tracing cores, turning these effects on involves a heavy performance trade. Though the hardware supports the technology, the penalty to overall smoothness is significant enough that most players will find the visual trade-off difficult to justify in fast-paced titles.
  • Upscaling Support: You have access to DLSS 2 for improved performance through temporal upscaling. It is important to note that this card does not support the AI frame generation found in later generations, so your ceiling is determined by the actual rendering power of the silicon.
Intel Arc B570
Gaming Analysis:

The Intel Arc B570 delivers strong results as a high-value choice for standard resolutions, though it can manage higher pixel counts if you are willing to adjust expectations. It is not meant for heavy workloads at 4K where performance drops off significantly. At 1080p, the experience is fluid and consistent across modern releases, representing a serious step up in performance for its class. While the Xe2-HPG architecture is more refined than previous efforts, you still need to be aware that Intel hardware relies heavily on steady driver updates to stay competitive.

The 10GB VRAM configuration serves as a capable middle ground between cramped budget options and high-end enthusiast cards. This extra memory headroom helps prevent the stuttering and hitching that often occur when 8GB cards run out of space for textures. With a 160-bit memory bus, the card maintains enough bandwidth to handle fast motion without the underlying data pipeline becoming a bottleneck. You likely will not have to drop down to lower texture settings just to keep the image stable during intense scenes.

Ray tracing performance is a standout trait for any card at this MSRP, though you should keep your settings realistic. The dedicated ray tracing cores within the Battlemage architecture handle lighting calculations with more efficiency than typical entry-level hardware, often competing comfortably with standard industry alternatives in heavy lighting scenarios. Reflections and shadows appear more natural without making the game feel sluggish. At 1440p, the demand of these effects grows, making XeSS upscaling a helpful tool for keeping the visuals smooth and responsive.

  • Standard resolution gaming is excellent, frequently rivaling more expensive hardware.
  • Higher resolutions are reachable but usually require upscaling or lower presets to maintain a steady feel.
  • The Xe2-HPG architecture shows strong compatibility with modern DirectX 12 and Vulkan APIs.
  • Legacy DirectX 11 software may occasionally experience uneven frame delivery as drivers manage the CPU overhead.
  • The 10GB of GDDR6 memory avoids the texture popping or visual glitches common on 8GB cards.
  • Intel XeSS 2 provides significant fluidity improvements through frame generation technology.
  • A power supply of at least 550W is recommended to ensure the system remains stable under heavy gaming loads.
GeForce RTX 3060 12GB
Productivity Analysis:

While the hardware is designed to handle high-definition play, the 12GB of VRAM transitions this card from a standard gaming chip into a stable entry point for professional creative work. Hardware speed is only one part of the equation when you are building a workstation, as technical limitations like memory capacity often dictate whether a project can even be opened. This specific model provides a massive buffer that prevents the system from hitting a hard wall when you load high-resolution assets or complex 3D scenes that would overwhelm cards with less memory.

  • The 12GB memory buffer acts as a safety net for 4K video editing and high-resolution textures where 8GB often serves as a functional ceiling. Having this extra overhead means the software can keep more data on the card rather than swapping to slower system memory, which preserves the responsiveness of your workstation during long sessions.
  • The Ampere architecture provides deep integration with professional suites through the CUDA ecosystem, offering a level of driver stability that is helpful when reliability is the priority. Whether you are using specific rendering engines or hardware acceleration for creative effects, the software support is mature and functions without the friction often found on less established platforms.
  • A 192-bit memory bus facilitates a steady flow of data that helps the timeline feel responsive when you are scrubbing through footage or moving the playhead across a busy project. This bandwidth ensures that the preview window updates with minimal delay, allowing for a more natural rhythm while editing rather than a stuttering experience.
  • The inclusion of 112 Tensor cores provides the necessary hardware for modern AI-assisted tools like background removal and automated masking. With 12.7 TFLOPS of compute performance, these specialized tasks finish quickly, which transforms the hardware into a capable choice for local AI experiments or smart filtering in photography applications.
  • The dedicated hardware encoder offloads the heavy lifting of video exports and live broadcasts to a specialized block on the silicon. This allows your primary system resources to remain available for the actual creative task, ensuring the final output is processed efficiently without causing the rest of your software to become sluggish or unresponsive.

Stability is the metric that matters most when a project is due and you cannot afford a technical failure. This hardware is not the fastest available, but the generous memory capacity makes it a reliable tool for people who need to ensure their renders finish without running out of resources. It offers a level of comfort that is rare for a mid-range component, providing the headroom needed to handle professional workloads without the constant worry of hitting hardware limits. You are getting a tool that prioritizes consistent progress over theoretical peak speeds.

Intel Arc B570
Productivity Analysis:

While the hardware handles gaming with ease, the Intel Arc B570 offers a different experience when you move into professional software where stability and driver maturity take center stage. This card provides the hardware muscle for creative tasks, but the software side remains in a state of ongoing development. You can ignore occasional friction in a match, but a crash during a long render is much harder to overlook. The Xe2-HPG architecture is built for modern standards, yet anyone using this for work must accept that Intel is still refining the software support required for a perfectly fluid professional workflow.

The 10GB VRAM buffer offers a helpful middle ground compared to the more common 8GB found on many entry-level cards. This extra space prevents the immediate slowdowns that happen when a video timeline or a 3D scene exceeds the memory of the card. With a 160-bit memory bus and 380 GB/s of bandwidth, scrubbing through high-resolution footage feels responsive rather than sticky or sluggish. If you push into massive 3D environments with heavy textures, you will eventually reach a limit where the system begins to struggle, but for standard 1440p projects, the ceiling is comfortable. It provides just enough breathing room to keep your focus on the work instead of managing hardware limits.

Intel includes a capable media engine featuring hardware support for modern standards like AV1 and VVC. This allows the GPU to process heavy exports and high-bitrate broadcasts without placing the entire load on your CPU. It handles complex chroma subsampling that often causes issues for older hardware, making it a strong choice for video editors working with modern camera files. You lose the specific software optimizations found in the CUDA ecosystem, which can be a hurdle if your specific tools are built around that industry standard. However, the raw compute performance and XMX engines make it a credible contender for AI-assisted tools like noise reduction and automated masking in common editing suites.

  • The 10GB of VRAM provides a small but helpful safety margin for complex timelines and higher-resolution texture work.
  • Hardware support for VVC and AV1 makes the card a strong choice for modern video encoding and archival tasks.
  • High memory bandwidth ensures that navigating through uncompressed media files remains smooth and predictable.
  • The 550W power supply requirement ensures the system has enough headroom for stability during the long hours of a heavy render.
  • Dedicated XMX engines provide a significant boost for localized AI tasks like upscaling and smart masking in creative applications.
GeForce RTX 3060 12GB
Feature Analysis:

A 170W power draw places this hardware into a comfortable category for most mid-sized cases where heat management remains straightforward and predictable. While the base manufacturer requirement suggests a 450W power supply, pairing this card with a 550W unit provides the necessary electrical headroom to handle transient spikes without stressing your components. This extra cushion ensures that your system maintains stability during long gaming sessions or overnight renders when a smaller unit might struggle under the constant thermal and electrical load.

  • The PCIe 4.0 x16 interface ensures that the card communicates with your motherboard through a full set of data lanes. This provides a level of flexibility for those upgrading older systems that only support PCIe 3.0, as you avoid the technical bottlenecks sometimes found on budget cards with narrower lane counts.
  • The power delivery relies on a single connector that uses standard cabling rather than the newer, more rigid power standards found on high-end flagship cards. This makes the installation process much simpler for standard power supplies and allows for easier cable management in smaller chassis where space for thick adapters is limited.
  • The 12GB VRAM capacity provides a significant buffer for 1440p textures and complex asset libraries that frequently exceed the limits of 8GB hardware. Having this physical memory on the board allows you to keep settings high without the stuttering that occurs when a system is forced to swap data between the GPU and slower system RAM.
  • The Ampere architecture lacks the specific specialized hardware for AI-generated frame interpolation found in more recent generations. Your performance is tied directly to the raw rendering capability of the silicon and the standard upscaling features available in the software ecosystem.
  • The physical footprint of these cards is generally compact enough to fit into most standard towers without requiring specialized brackets or oversized enclosures. This makes it a versatile choice for builders who prefer a functional, no-fuss assembly over the massive cooling solutions required by higher-wattage components.

Choosing this hardware is a decision to prioritize physical memory capacity and architectural stability over the latest software-driven features. It serves as a dependable workhorse that integrates easily with a wide variety of power supplies and older motherboards without requiring expensive platform upgrades. You are investing in a component that handles fundamental tasks like high-resolution texture loading and local compute work with a level of reliability that defined its generation. It remains a practical option for builders who value consistent, predictable behavior across a broad range of legacy and modern hardware configurations.

Intel Arc B570
Feature Analysis:

A typical thermal design power of 150W makes the Intel Arc B570 relatively simple to cool, though build stability depends on more than just the temperature of the chip. While the base specification suggests a 450W power supply, aiming for a 550W unit provides a necessary buffer for transient power spikes and system wide efficiency. Running a power supply too close to its maximum capacity often leads to increased fan noise and unnecessary heat buildup within the case. Maintaining this overhead ensures your internal components receive clean power during the rapid fluctuations of modern gaming and creative software.

The PCIe 4.0 x8 interface presents a specific consideration for anyone installing this card into an older motherboard. Because it utilizes half the physical lanes of a full x16 slot, users on PCIe 3.0 platforms will effectively operate with reduced bandwidth. This limitation rarely causes issues in every title, but it can lead to inconsistent frame delivery or stuttering in games that aggressively move data between the system memory and the 10GB of VRAM. You should also verify that your system supports Resizable BAR, as this specific Intel architecture relies on that feature to function at its intended performance level.

You can avoid the complexities of modern high end power standards because this card relies on a single 8-pin connector. There is no requirement for specialized adapters or the stiffer cables associated with newer power specifications, which helps keeps cable management straightforward and reliable. The 10GB of GDDR6 memory sits on a 160-bit bus, providing a total of 380 GB/s bandwidth to keep textures loading smoothly at 1080p and 1440p. While you are adopting a newer software ecosystem that is still maturing, the hardware itself follows a traditional and user friendly installation path that fits easily into most standard mid sized cases.

  • The 150W power draw helps maintain a quiet system environment by putting less cooling pressure on your case fans.
  • A standard 8-pin power connector ensures compatibility with most existing power supplies without needing extra adapters.
  • Using a 550W power supply provides the stability needed to handle the momentary power fluctuations common in the Xe2-HPG architecture.
  • The 10GB VRAM configuration offers a meaningful safety margin over older 8GB cards when playing open world games with high resolution textures.
  • Support for the VVC codec and AV1 encoding provides a future proof pathway for high quality video playback and streaming tasks.
GeForce RTX 3060 12GB
Full Tech Specs:
Feature Specification
Name GeForce RTX 3060 12GB
MSRP $329
Release Date 2021-01-12
Chipset Manufacturer NVIDIA
Memory Size 12 GB
Memory Type GDDR6
Memory Bus 192 bit
Memory Clock 1875 MHz
Memory Bandwidth 360.0 GB/s
Base Clock 1320 MHz
Boost Clock 1777 MHz
Shading Units 3584
Ray Tracing Cores 28
TMUs 112
ROPs 48
Pixel Rate 85.3 GPixel/s
Texture Rate 199 GTexel/s
Compute Power (FP16) 12.7 TFLOPS
Compute Power (FP32) 12.7 TFLOPS
Compute Power (FP64) 199.0 GFLOPS
Architecture Ampere
Process Size 8 nm
Interface PCIe 4.0 x16
Power Connectors 1x 12-pin
TDP 170 W
Suggested PSU (Minimum) 550 W
Intel Arc B570
Full Tech Specs:
Feature Specification
Product Name Intel Arc B570
MSRP $219
Release Date 2025-01-16
Manufacturer Intel
Memory Size 10 GB
Memory Type GDDR6
Memory Bus 160 bit
Memory Clock 2375 MHz
Memory Bandwidth 380.0 GB/s
Base Clock 2500 MHz
Boost Clock 2500 MHz
Shading Units 2304
Ray Tracing Cores 18
TMUs 144
ROPs 80
Pixel Rate 200 GPixel/s
Texture Rate 360 GTexel/s
Compute Power (FP16) 23.0 TFLOPS
Compute Power (FP32) 11.5 TFLOPS
Compute Power (FP64) 1.4 TFLOPS
Architecture Xe2-HPG
Process Size 5 nm
Interface PCIe 4.0 x8
Power Connectors 1x 8-pin
TDP 150 W
Recommended PSU 550 W

Final Verdict

The Intel Arc B570 represents a massive shift in value for the budget GPU market by offering modern features at a $219 MSRP. While the GeForce RTX 3060 12GB has served as a reliable mid-range staple, its Ampere architecture is now showing its age. The B570 utilizes the newer Xe2-HPG architecture, which provides significant improvements in specialized hardware tasks. One of the most glaring differences is in the media engine. While the RTX 3060 can decode AV1 video, it lacks the ability to encode it, leaving streamers and video editors behind. The Intel card handles AV1 encoding natively while also introducing support for the newer VVC standard. This makes the B570 a more future-proof tool for content creation at a much lower launch MSRP than the NVIDIA alternative.

Gaming performance between these two cards is surprisingly close in standard scenarios, but the technological gap remains wide. The B570 supports Intel XeSS 2 frame generation, a feature that helps maintain smooth motion in demanding titles. The RTX 3060 is limited to standard DLSS upscaling because NVIDIA reserved frame generation for its newer hardware generations. Even though the RTX 3060 has 12GB of VRAM compared to the 10GB on the B570, the Intel card offers slightly higher memory bandwidth to keep data moving quickly between the GPU and the system. The choice really comes down to whether you need the legacy stability of the CUDA ecosystem or the cutting-edge features of a modern 5nm process node. For most users, the savings provided by the $219 MSRP of the B570 make it the clear winner for a fresh build.

  • Buy Intel Arc B570 if you want a modern GPU with AV1 encoding and frame generation support at a lower $219 MSRP.
  • Buy GeForce RTX 3060 12GB if you specifically require the 12GB VRAM buffer for heavy texture mods or need the CUDA platform for specialized professional software.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.