GeForce RTX 4060 Ti 8GB vs GeForce RTX 5060

Winner:
GeForce RTX 5060
Main Difference:
Newer Blackwell features and much lower launch MSRP with comparable power.
Page Summary:
GeForce RTX 5060 wins by delivering similar gaming performance to the older card while launching at a $299 MSRP and introducing superior Blackwell architecture features.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 4060 Ti 8GB

MSRP:
$399
See Current Price
Spec Sheet:
Core Count:
4352
Thread Count:
Base Clock:
2310 MHz
Boost Clock:
2535 MHz
Integrated Graphics:
VRAM:
8.0 GB
L3 Cache:
8.0 GB
TDP:
160 W
Socket:
128 bit
Bus Width:
128 bit
Release Date:
2023-05-18
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
45.5
38.4
1440p
34.5
27.8
4K
17.8
17.8
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

GeForce RTX 5060

MSRP:
$299
See Current Price
Spec Sheet:
Core Count:
3840
Thread Count:
Base Clock:
2280 MHz
Boost Clock:
2497 MHz
Integrated Graphics:
VRAM:
8.0 GB
L3 Cache:
8.0 GB
TDP:
145 W
Socket:
128 bit
Bus Width:
128 bit
Release Date:
2025-05-19
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
44.5
36.1
1440p
31.9
23.8
4K
18.7
14.1
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 4060 Ti 8GB
Gaming Analysis:

The GeForce RTX 4060 Ti 8GB works as a dedicated tool for high-fidelity 1080p experiences where it maintains fluid movement across heavy titles. It handles standard resolutions with composure, though pushing into higher pixel counts reveals the hardware boundaries of the Ada Lovelace architecture in this tier. This card focuses on dominating the 1080p category, meaning that while it functions at higher resolutions, you will likely encounter friction and constrained performance if you move too far beyond that baseline.

The 8.0 GB VRAM buffer serves as a strict limit for texture quality in modern software. As titles demand more memory for assets, this card requires a conservative approach to settings to avoid stuttering or visual degradation. You might see high-quality textures struggle to load or notice sudden hitches if you push for maximum fidelity in demanding releases. Maintaining a smooth experience often requires choosing localized settings over broad ultra presets to ensure the hardware can keep up with the data flow during intense sequences.

  • 1080p Performance. This is where the hardware feels most natural, providing enough speed to saturate fast displays without forcing compromises in every menu.
  • 1440p Performance. The 128 bit memory bus can feel like a bottleneck here, making the transition to higher resolutions feel a bit heavy as the card works harder to move data.
  • 4K Performance. This resolution generally overwhelms the 8.0 GB buffer and the core architecture, often resulting in erratic frame delivery that makes gameplay feel inconsistent.
  • Ray Tracing Capability. With 34 Ray Tracing cores, the card handles lighting and reflections reasonably well at lower resolutions, though enabling these features increases the pressure on the limited memory overhead.
  • Upscaling Support. Access to DLSS 3 and frame generation provides a mechanical advantage, helping to smooth out the experience even when the native hardware reaches its physical limits.

Selecting this card means opting for a very efficient design that sips power while staying cool in smaller chassis. While its 2535 MHz Boost Clock provides snappiness, the 8.0 GB of GDDR6 memory suggests a shorter shelf life for those who refuse to lower their settings over time. It is a capable mid-tier performer for those who understand their resolution boundaries and value a quiet, low-energy build over raw, unoptimized strength.

GeForce RTX 5060
Gaming Analysis:

The GeForce RTX 5060 functions as a targeted solution for 1080p gaming. Attempting to drive high-resolution panels with this hardware often leads to a compromised experience because the silicon lacks the raw horsepower to manage heavy pixel loads without substantial help from software upscaling. At its native 1080p target, the card provides a fluid experience in competitive shooters like Counter-Strike 2 and Valorant. In these titles, it maintains the high frame rates necessary for responsive movement. The behavior changes when moving into the latest flagship titles like Cyberpunk 2077 or Hogwarts Legacy, where you can expect a stable image as long as you respect the hardware boundaries.

The 8GB VRAM buffer acts as a firm ceiling on your visual settings. Modern games frequently demand more than 8GB of memory to load high-quality textures, and hitting that limit can cause noticeable hitching or stuttering. In demanding releases like Indiana Jones and the Great Circle or Stalker 2, the 8GB capacity is a physical constraint. To maintain consistent frame delivery and avoid sudden performance drops, many players will need to adjust texture sliders to Medium or High. This card is not designed for those who insist on Ultra presets across the board. It is built for the player who wants a reliable 1080p machine with a modest power profile.

  • 1080p Performance: The Blackwell architecture is most effective at this resolution, where it delivers clear visuals and steady motion across a wide library of games.
  • Ray Tracing Realities: While the 30 dedicated RT cores facilitate advanced lighting, enabling heavy effects in demanding titles is usually a heavy trade-off. Complex reflections and global illumination can significantly impact performance, making the gameplay feel heavy unless you reduce other settings.
  • DLSS 4 and Frame Generation: The inclusion of Multi-Frame Generation provides a way to increase perceived smoothness through the new hardware. This is the primary way the card remains viable if you attempt to play at 1440p, though it produces the best results when the base performance is already stable to avoid sluggish input.
  • Memory and Bandwidth: The 128-bit bus and GDDR7 memory are fast but narrow. You may see performance degradation in memory-intensive scenarios compared to cards with larger buffers because the architecture is frequently waiting for data to move through the limited pipeline.
GeForce RTX 4060 Ti 8GB
Productivity Analysis:

While the focus at 1080p is on fluid motion, transitioning into a professional workflow shifts the priority toward stability and internal memory management. The GeForce RTX 4060 Ti 8GB handles standard creative tasks with relative ease, but the physical constraints of the hardware become apparent when projects grow in size. You are no longer just measuring frames, as you are now managing the balance between a modern architecture and a specific ceiling on how much data the card can hold at once before performance begins to degrade during a render or export.

The 8.0 GB VRAM buffer acts as a strict boundary for high-resolution video editing or complex 3D environments. If a scene requires more than the available onboard memory, the system must swap data to slower system RAM which often results in a sluggish interface or visible lag when scrubbing through a timeline. This friction is particularly noticeable in 4K video projects where textures and effects quickly fill the available space. It remains a reliable tool for focused tasks, though it requires a disciplined approach to project organization to avoid exceeding the hardware limits during intensive sessions.

  • Software Integration. Building on the Ada Lovelace architecture ensures that this card works reliably with industry standard creative suites, offering a stable environment for those who prefer to spend time working rather than troubleshooting driver conflicts.
  • Memory Bus Behavior. The 128 bit bus functions as a specific channel for moving assets, and while it stays efficient, it can feel more restrictive when you are attempting to move massive geometry files or heavy data sets compared to higher tier alternatives.
  • AI Processing. Specialized Tensor cores provide a significant speed boost for modern features like noise reduction or automated masking, which saves a considerable amount of manual effort in photography and design software.
  • Video Encoding Capabilities. Support for the 8th Gen NVENC and AV1 allows for high quality video output at efficient bitrates, making it a strong choice for those who need to produce clean exports without taxing the entire system.
  • Ray Tracing Acceleration. With 34 Ray Tracing cores, the card accelerates viewports in 3D applications, allowing you to see lighting changes in nearly real time without relying solely on the processor for every calculation.

This card is a very efficient choice for a compact studio or a quiet office environment because it produces minimal heat even when the hardware is pushed to its maximum capacity. Choosing this model involves a trade-off where you gain the benefits of a low-power design at the cost of long-term memory headroom. You might find yourself using proxies for 4K video or simplifying 3D meshes to stay within the 8.0 GB limit, but for those who primarily work in 1080p or moderately sized projects, it remains a consistent performer. It is a capable mid-range tool that rewards users who understand its specific boundaries and optimize their workflow accordingly.

GeForce RTX 5060
Productivity Analysis:

While the GeForce RTX 5060 handles gaming with competence, shifting into a professional workflow requires a different perspective on how this Blackwell hardware manages pressure. You should view this card as a specialized tool for entry-level creative work where project size stays within predictable bounds. The core architecture is responsive during active editing, but the 8.0 GB of GDDR7 memory acts as a definitive physical boundary when you transition from light photo adjustments to complex production environments. If you are handling standard 1080p video cuts or basic graphic design, the experience remains fluid, but the hardware will signal its limits clearly the moment you attempt to load a detailed 3D scene or a high-resolution timeline that demands more space than the buffer provides.

The memory capacity is the primary factor you must manage if you intend to use this card as a consistent workstation component. In rendering engines like Blender, a project must fit within the video memory to maintain speed, and exceeding that 8.0 GB threshold often forces the system to rely on much slower system memory. This transition usually results in significant slowdowns that can stall a workspace and extend wait times for simple visual updates. For a student or a hobbyist building their first dedicated machine, it offers a stable starting point, but professionals dealing with large-scale assets will find they spend a fair amount of time optimizing their files to stay under the hardware ceiling.

  • The CUDA Ecosystem: Choosing this architecture provides access to a deep library of software support where most creative suites prioritize stability for these specific cores. In applications like Premiere Pro or various 3D suites, this translates to fewer software errors and a more predictable experience when you are working against a tight deadline.
  • Memory Throughput: The 448.0 GB/s bandwidth helps keep the interface feeling snappy during high-resolution playback. Even though the memory pool is small, the speed at which data moves helps prevent the "sticky" feeling often found on older hardware when scrubbing through a project.
  • Video Processing: The dedicated encoding hardware manages specialized high-fidelity video formats by offloading the heavy computational work from the processor. This allows the rest of your operating system to remain responsive while the GPU handles the background labor of rendering out a video file.
  • Compute Performance: With 19.2 TFLOPS of power available for specific math operations, the card handles modern AI-accelerated tasks with efficiency. Tools like noise reduction or automated masking in photo editors process significantly faster on these dedicated Blackwell cores than they would on a standard CPU.
  • Interface Constraints: You should be aware that the 128-bit bus creates a narrow path for data movement. This limitation becomes most apparent when you try to export very large assets or attempt to run multiple heavy creative applications at the same time, which can lead to a sense of congestion.

Efficiency is the defining trait of this card for a compact workstation build. It is a reliable engine that avoids the stability issues sometimes found in less established ecosystems, provided you keep your project scope realistic. You receive the latest architectural benefits and the security of refined drivers, which makes it a safe choice for those who value a consistent work environment over raw scale. This card serves the creator who needs a predictable machine that operates within a modest power profile and does not require a massive power supply, as a 450W unit is generally sufficient for the entire system.

GeForce RTX 4060 Ti 8GB
Feature Analysis:

A tight 8.0 GB VRAM buffer defines the physical lifespan of this hardware more than any other spec because it creates a hard ceiling for texture quality in modern software. While the Ada Lovelace architecture is efficient, the limited memory capacity means you are essentially locked into a 1080p ecosystem if you want to maintain high visual fidelity without constant stuttering. If you attempt to push into 1440p or use high-resolution texture packs, the card often runs out of space to store assets, which can lead to visual pop-in or sudden drops in fluid motion. It is a specialized tool for the present, designed specifically for those who prioritize a low-energy footprint over the ability to crank every slider to maximum in future releases.

The PCIe 4.0 x8 interface serves as a specific technical hurdle that demands attention if you are upgrading an older workstation or gaming rig. Most enthusiasts are used to 16 lanes of bandwidth, but this card uses only eight, which can result in a measurable performance penalty on older PCIe 3.0 motherboards. This bottleneck occurs because the reduced lane count restricts how quickly data moves between the processor and the graphics hardware when the VRAM is full. You should verify your platform generation before committing to this purchase to ensure you are actually utilizing the full potential of the silicon rather than leaving performance on the table due to a motherboard mismatch.

  • Power Supply Requirements. While the card is rated for a modest 160 W TDP, pairing it with a 550W power supply ensures the system remains stable during the brief power spikes that occur during heavy rendering or intense gaming sessions.
  • Physical Connectivity. This model utilizes a 16-pin power connector, which requires careful cable management and a clean lead from the power supply to ensure the connection remains secure and unbent within your chassis.
  • Thermal Efficiency. The Ada Lovelace design allows this card to operate with very little heat output, making it an excellent candidate for small form factor builds where airflow is restricted and space is at a premium.
  • Architectural Stability. Relying on a modern architecture ensures consistent driver support for professional creative suites, though you will still need to manage your project sizes to avoid hitting the 8.0 GB memory wall.

Choosing this hardware involves a clear trade-off where you favor the stability of the Nvidia ecosystem and high power efficiency over raw memory headroom. You gain the benefits of a cool, quiet build that fits easily into almost any case, but you must accept the 128 bit memory bus as a permanent constraint on your workflow. It functions best as a reliable 1080p solution for users who want modern features without the thermal or power demands of high-tier flagships. As long as you stay within these established boundaries, the card provides a consistent and predictable experience for both daily tasks and focused creative projects.

GeForce RTX 5060
Feature Analysis:

The 8.0 GB VRAM buffer represents the definitive physical boundary for this hardware as we move further into the decade. While the Blackwell architecture introduces refined data handling, that specific memory capacity ensures the card remains a specialized tool for 1080p environments rather than a flexible solution for higher resolutions. If you attempt to load high-resolution texture packs at 1440p, the 128-bit bus may struggle to move assets quickly enough to prevent stuttering or frame time inconsistencies during fast movement. It is a capable engine for its class, but you must accept that it is built for a lifestyle of balanced settings in the most demanding upcoming titles.

A 145 W TDP places this card firmly in the power-efficient category, which simplifies your cooling strategy and prevents the system from generating excessive heat in smaller cases. While the official minimum power specification is 300 W, that figure leaves little room for the power spikes common during intensive gaming sessions. To ensure the system remains stable when both the GPU and CPU reach high utilization, you should install a 450W power supply. This extra capacity provides the necessary electrical headroom to protect your hardware from unexpected shutdowns under load.

  • Interface Selection: The PCIe 5.0 x8 interface is a factor to consider if you are upgrading an older machine with a PCIe 3.0 motherboard, as the limited lane count can impact bandwidth available for asset streaming.
  • Simple Connectivity: You can use a standard 1x 8-pin power connector with this model, allowing you to utilize traditional power cables without requiring specialized adapters or specific ATX 3.1 power supply upgrades.
  • Architecture Benefits: Building with Blackwell 2.0 provides access to the latest architectural efficiencies and driver optimizations, ensuring the card remains compatible with modern software features for several years.
  • Form Factor Versatility: The modest power requirements and thermal output of this 145 W chip usually result in smaller physical card dimensions, making it an excellent candidate for compact builds where space is restricted.
  • Reliability: The refined manufacturing process allows for a predictable experience where the card operates within a narrow thermal window, reducing the stress on your other internal components over time.

This is a hardware solution for the pragmatic builder who prioritizes a clean and straightforward assembly process. It provides the stability of the latest architecture without the physical complications of oversized dimensions or intense cooling requirements. You receive the benefits of the TSMC N4 process and a highly efficient power profile, but the 8.0 GB memory pool dictates your maximum visual settings. It functions as a reliable and predictable 1080p engine that stays within its lane while maintaining a quiet and cool presence inside your chassis.

GeForce RTX 4060 Ti 8GB
Full Tech Specs:
Feature Specification
Name GeForce RTX 4060 Ti 8GB
MSRP $399
Release Date 2023-05-18
Chipset Manufacturer NVIDIA
Memory Size 8 GB
Memory Type GDDR6
Memory Bus 128 bit
Memory Clock 2250 MHz
Memory Bandwidth 288.0 GB/s
Base Clock 2310 MHz
Boost Clock 2535 MHz
Shading Units 4352
Ray Tracing Cores 34
TMUs 136
ROPs 48
Pixel Rate 121.7 GPixel/s
Texture Rate 344.8 GTexel/s
Compute Power (FP16) 22.1 TFLOPS
Compute Power (FP32) 22.1 TFLOPS
Compute Power (FP64) 344.8 GFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x8
Power Connectors 1x 16-pin
TDP 160 W
Suggested PSU (Minimum) 550 W
GeForce RTX 5060
Full Tech Specs:
Feature Specification
Model GeForce RTX 5060
MSRP $299
Release Date 2025-05-19
Chipset Manufacturer NVIDIA
Memory Size 8 GB
Memory Type GDDR7
Memory Bus 128 bit
Memory Clock 1750 MHz
Memory Bandwidth 448.0 GB/s
Base Clock 2280 MHz
Boost Clock 2497 MHz
Shading Units 3840
Ray Tracing Cores 30
TMUs 120
ROPs 48
Pixel Rate 119.9 GPixel/s
Texture Rate 299.6 GTexel/s
Compute Power (FP16) 19.2 TFLOPS
Compute Power (FP32) 19.2 TFLOPS
Compute Power (FP64) 299.6 GFLOPS
Architecture Blackwell 2.0
Process Size 5 nm
Interface PCIe 5.0 x8
Power Connectors 1x 8-pin
TDP 145 W
Suggested PSU (Minimum) 400 W

Final Verdict

Choosing between these two cards requires a look at architectural longevity rather than just raw speed. The GeForce RTX 5060 brings the newer Blackwell architecture to the table and manages to match the general gaming experience of the previous generation while coming in at a significantly more attractive $299 MSRP. While the GeForce RTX 4060 Ti 8GB technically holds a slight edge in raw rasterization and ray tracing throughput, the gap is small enough that the newer card feels like the smarter investment for most builders. The move to GDDR7 memory on the 5060 provides a substantial boost to memory bandwidth which helps keep frame delivery smooth even when the 8GB buffer starts to feel tight.

The power story is another clear win for the newer card as it operates with much higher efficiency and requires a less beefy power supply. Because both cards share the same 128-bit bus and 8GB capacity, they both face similar hurdles in heavy textures or modern high-detail titles. However, the Blackwell-based 5060 introduces support for newer frame generation technologies and AI-driven features that the Ada Lovelace suite lacks. This makes it a more versatile pick for productivity tasks involving AI acceleration or modern video encoding workflows. The GeForce RTX 4060 Ti 8GB remains a capable piece of hardware, but its original $399 MSRP makes it a harder sell when the successor offers nearly the same punch for much less money at launch. Buy GeForce RTX 4060 Ti 8GB if you already found one at a massive discount and absolutely need every extra point of raw rasterization speed. Buy GeForce RTX 5060 if you want the best value for your money and access to the latest architectural features like Blackwell and GDDR7 memory.

  • Architecture: The RTX 5060 uses the Blackwell platform featuring better efficiency and updated NVENC support.
  • Memory: Upgraded GDDR7 on the newer card provides significantly more bandwidth than the GDDR6 found on the older Ti model.
  • Value: A $299 MSRP for the 5060 represents a much better entry point than the $399 MSRP of the 4060 Ti.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.