GeForce RTX 4060 Ti 8GB vs Intel Arc A580

Winner:
GeForce RTX 4060 Ti 8GB
Main Difference:
The NVIDIA card offers superior efficiency and software features despite its higher MSRP.
Page Summary:
GeForce RTX 4060 Ti 8GB is the winner because it provides a much more refined experience with better power efficiency and Frame Generation support.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 4060 Ti 8GB

MSRP:
$399
See Current Price
Spec Sheet:
Core Count:
4352
Thread Count:
Base Clock:
2310 MHz
Boost Clock:
2535 MHz
Integrated Graphics:
VRAM:
8.0 GB
L3 Cache:
8.0 GB
TDP:
160 W
Socket:
128 bit
Bus Width:
128 bit
Release Date:
2023-05-18
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
45.5
38.4
1440p
34.5
27.8
4K
17.8
17.8
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Intel Arc A580

MSRP:
$179
See Current Price
Spec Sheet:
Core Count:
3072
Thread Count:
Base Clock:
1700 MHz
Boost Clock:
2000 MHz
Integrated Graphics:
VRAM:
8.0 GB
L3 Cache:
8.0 GB
TDP:
175 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2023-10-10
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
24.2
24
1440p
19.5
16.2
4K
15.4
10.6
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 4060 Ti 8GB
Gaming Analysis:

The GeForce RTX 4060 Ti 8GB works as a dedicated tool for high-fidelity 1080p experiences where it maintains fluid movement across heavy titles. It handles standard resolutions with composure, though pushing into higher pixel counts reveals the hardware boundaries of the Ada Lovelace architecture in this tier. This card focuses on dominating the 1080p category, meaning that while it functions at higher resolutions, you will likely encounter friction and constrained performance if you move too far beyond that baseline.

The 8.0 GB VRAM buffer serves as a strict limit for texture quality in modern software. As titles demand more memory for assets, this card requires a conservative approach to settings to avoid stuttering or visual degradation. You might see high-quality textures struggle to load or notice sudden hitches if you push for maximum fidelity in demanding releases. Maintaining a smooth experience often requires choosing localized settings over broad ultra presets to ensure the hardware can keep up with the data flow during intense sequences.

  • 1080p Performance. This is where the hardware feels most natural, providing enough speed to saturate fast displays without forcing compromises in every menu.
  • 1440p Performance. The 128 bit memory bus can feel like a bottleneck here, making the transition to higher resolutions feel a bit heavy as the card works harder to move data.
  • 4K Performance. This resolution generally overwhelms the 8.0 GB buffer and the core architecture, often resulting in erratic frame delivery that makes gameplay feel inconsistent.
  • Ray Tracing Capability. With 34 Ray Tracing cores, the card handles lighting and reflections reasonably well at lower resolutions, though enabling these features increases the pressure on the limited memory overhead.
  • Upscaling Support. Access to DLSS 3 and frame generation provides a mechanical advantage, helping to smooth out the experience even when the native hardware reaches its physical limits.

Selecting this card means opting for a very efficient design that sips power while staying cool in smaller chassis. While its 2535 MHz Boost Clock provides snappiness, the 8.0 GB of GDDR6 memory suggests a shorter shelf life for those who refuse to lower their settings over time. It is a capable mid-tier performer for those who understand their resolution boundaries and value a quiet, low-energy build over raw, unoptimized strength.

Intel Arc A580
Gaming Analysis:

The Intel Arc A580 is a 1080p gaming card that serves as a competent entry point for budget builds but lacks the raw muscle to maintain fluidity at higher resolutions. While it sits on a fast 256-bit memory bus that helps it stay responsive, the Xe-HPG silicon is tuned for standard high-definition monitors. If you try to push this card to run 1440p on modern titles, you will likely encounter chugging frame rates and a loss of responsive snap during fast motion. It is a solid choice for the 1080p gamer who wants high frame rates in esports titles, but it finds its limit when you step into heavier open-world environments.

With 8GB of GDDR6 VRAM, your texture budget requires careful management because that amount is becoming the floor for modern software. You can expect crisp visuals on High settings in older titles, but in newer games, you will likely need to drop textures to Medium to avoid stuttering or sudden hitches when you turn a corner in-game. The card has the bandwidth to move data quickly across its wide bus, but the memory capacity is not deep enough for the massive uncompressed texture packs common in current releases.

  • The standard rasterization performance at 1080p is its strongest suit, delivering smooth movement in Vulkan-based games where the Intel drivers are most mature.
  • Ray tracing performance is surprisingly competent for a budget card, holding its ground well thanks to 24 dedicated Ray Tracing units.
  • Using Ray Tracing at 1080p is viable if you pair it with XeSS upscaling, which helps clean up the image and recover performance lost to complex lighting calculations.
  • At 1440p, the performance drops off significantly, particularly in DirectX titles where the driver overhead still causes inconsistent frame times.
  • While the card handles reflections and shadows better than many rivals in its class, it enters slide-show territory when pushed to 4K resolutions.

You must keep the power draw in mind because this card is remarkably thirsty for the level of performance it provides. It pulls over 200W during intense gaming sessions, which is significantly more heat and electricity than some competing cards. This means your case will get warmer and your fans will likely spin louder than they would with a more efficient rival. To support this card and a standard system, a 550W power supply is a sensible minimum. It is a capable, gritty performer for the 1080p enthusiast, but the high power draw and 8GB VRAM limit mean it is a tool for the present rather than a long-term investment. Given its launch MSRP of $179, it offers a specific path into modern features for those who do not mind the trade-off in efficiency.

GeForce RTX 4060 Ti 8GB
Productivity Analysis:

While the focus at 1080p is on fluid motion, transitioning into a professional workflow shifts the priority toward stability and internal memory management. The GeForce RTX 4060 Ti 8GB handles standard creative tasks with relative ease, but the physical constraints of the hardware become apparent when projects grow in size. You are no longer just measuring frames, as you are now managing the balance between a modern architecture and a specific ceiling on how much data the card can hold at once before performance begins to degrade during a render or export.

The 8.0 GB VRAM buffer acts as a strict boundary for high-resolution video editing or complex 3D environments. If a scene requires more than the available onboard memory, the system must swap data to slower system RAM which often results in a sluggish interface or visible lag when scrubbing through a timeline. This friction is particularly noticeable in 4K video projects where textures and effects quickly fill the available space. It remains a reliable tool for focused tasks, though it requires a disciplined approach to project organization to avoid exceeding the hardware limits during intensive sessions.

  • Software Integration. Building on the Ada Lovelace architecture ensures that this card works reliably with industry standard creative suites, offering a stable environment for those who prefer to spend time working rather than troubleshooting driver conflicts.
  • Memory Bus Behavior. The 128 bit bus functions as a specific channel for moving assets, and while it stays efficient, it can feel more restrictive when you are attempting to move massive geometry files or heavy data sets compared to higher tier alternatives.
  • AI Processing. Specialized Tensor cores provide a significant speed boost for modern features like noise reduction or automated masking, which saves a considerable amount of manual effort in photography and design software.
  • Video Encoding Capabilities. Support for the 8th Gen NVENC and AV1 allows for high quality video output at efficient bitrates, making it a strong choice for those who need to produce clean exports without taxing the entire system.
  • Ray Tracing Acceleration. With 34 Ray Tracing cores, the card accelerates viewports in 3D applications, allowing you to see lighting changes in nearly real time without relying solely on the processor for every calculation.

This card is a very efficient choice for a compact studio or a quiet office environment because it produces minimal heat even when the hardware is pushed to its maximum capacity. Choosing this model involves a trade-off where you gain the benefits of a low-power design at the cost of long-term memory headroom. You might find yourself using proxies for 4K video or simplifying 3D meshes to stay within the 8.0 GB limit, but for those who primarily work in 1080p or moderately sized projects, it remains a consistent performer. It is a capable mid-range tool that rewards users who understand its specific boundaries and optimize their workflow accordingly.

Intel Arc A580
Productivity Analysis:

While the gaming side of the Intel Arc A580 is defined by 1080p stability, shifting to a creative timeline introduces a different set of physical demands on the Xe-HPG architecture. Moving from short bursts of activity into a workstation role requires looking at how the silicon handles sustained data throughput during a long render or a complex 3D export. The high power draw mentioned previously carries over into productivity tasks, where the card pulls significant wattage that produces noticeable heat. You will likely hear the cooling fans working hard to keep temperatures under control when you are grinding through a project. It is a loud, functional experience that reminds you this hardware was built for raw capability rather than thermal silence.

The 8.0 GB VRAM buffer behaves as a hard border for your creative projects. If you are working on standard high-definition video projects or basic 4K cuts, the card feels responsive and manages the assets without much friction. The moment you start stacking heavy color grades or noise reduction, you might encounter significant system hitching because that memory capacity is the floor for modern professional software. However, the 256-bit memory bus provides a genuine advantage many budget contenders lack. With 512.0 GB/s of bandwidth, scrubbing through the footage you can fit into memory feels strikingly snappy. It avoids the sticky lag often found on cards with narrower interfaces and moves data with the confidence of a much heavier component.

  • The hardware media engine is a primary reason to consider this card for a work build, as it offers full AV1 encoding and decoding features that are often missing from older budget hardware.
  • Intel QuickSync allows a compatible processor and this discrete card to share the workload during exports, though you must occasionally manage driver updates to ensure professional software recognizes the hardware correctly.
  • The 24 Ray Tracing cores are surprisingly functional for 3D modeling in viewport environments, holding their ground well when handling light and shadow calculations.
  • With 24.6 TFLOPS of FP16 performance, the card can serve as a budget entry point for local AI tasks or neural filters that do not exceed the onboard memory capacity.
  • Scientific simulations needing specialized precision are not the focus here, as the hardware is clearly tuned for creative media and visual tasks rather than high-level research.

Choosing this hardware for a professional environment means accepting a specific kind of ecosystem friction. You are forgoing the longstanding stability of established competitors, so you must be comfortable with the occasional driver hiccup or the need to check compatibility before updating your software. If your income depends on hitting a strict deadline every few hours, the occasional instability might be an issue. For a freelance editor on a budget or a student who needs powerful hardware encoding for video projects, the Arc A580 is a calculated choice. It provides professional-grade video tools in a package that requires a steady hand to manage the high power consumption and evolving driver landscape. Given its launch MSRP of $179, it represents a specific path into advanced media features for those who prioritize bandwidth over a larger memory pool.

GeForce RTX 4060 Ti 8GB
Feature Analysis:

A tight 8.0 GB VRAM buffer defines the physical lifespan of this hardware more than any other spec because it creates a hard ceiling for texture quality in modern software. While the Ada Lovelace architecture is efficient, the limited memory capacity means you are essentially locked into a 1080p ecosystem if you want to maintain high visual fidelity without constant stuttering. If you attempt to push into 1440p or use high-resolution texture packs, the card often runs out of space to store assets, which can lead to visual pop-in or sudden drops in fluid motion. It is a specialized tool for the present, designed specifically for those who prioritize a low-energy footprint over the ability to crank every slider to maximum in future releases.

The PCIe 4.0 x8 interface serves as a specific technical hurdle that demands attention if you are upgrading an older workstation or gaming rig. Most enthusiasts are used to 16 lanes of bandwidth, but this card uses only eight, which can result in a measurable performance penalty on older PCIe 3.0 motherboards. This bottleneck occurs because the reduced lane count restricts how quickly data moves between the processor and the graphics hardware when the VRAM is full. You should verify your platform generation before committing to this purchase to ensure you are actually utilizing the full potential of the silicon rather than leaving performance on the table due to a motherboard mismatch.

  • Power Supply Requirements. While the card is rated for a modest 160 W TDP, pairing it with a 550W power supply ensures the system remains stable during the brief power spikes that occur during heavy rendering or intense gaming sessions.
  • Physical Connectivity. This model utilizes a 16-pin power connector, which requires careful cable management and a clean lead from the power supply to ensure the connection remains secure and unbent within your chassis.
  • Thermal Efficiency. The Ada Lovelace design allows this card to operate with very little heat output, making it an excellent candidate for small form factor builds where airflow is restricted and space is at a premium.
  • Architectural Stability. Relying on a modern architecture ensures consistent driver support for professional creative suites, though you will still need to manage your project sizes to avoid hitting the 8.0 GB memory wall.

Choosing this hardware involves a clear trade-off where you favor the stability of the Nvidia ecosystem and high power efficiency over raw memory headroom. You gain the benefits of a cool, quiet build that fits easily into almost any case, but you must accept the 128 bit memory bus as a permanent constraint on your workflow. It functions best as a reliable 1080p solution for users who want modern features without the thermal or power demands of high-tier flagships. As long as you stay within these established boundaries, the card provides a consistent and predictable experience for both daily tasks and focused creative projects.

Intel Arc A580
Feature Analysis:

A typical 175W TDP rating suggests a mid-range thermal profile, but the physical reality of the Xe-HPG architecture is that it pushes considerable heat into your chassis during sustained use. This power demand is high for an entry-level part, meaning your case airflow needs to be active rather than passive to prevent the ambient temperature from climbing. While the official minimum specification suggests a 450W power supply, a 550W unit is the safer choice to handle the power spikes common with these Alchemist chips. Using a power supply with a bit more breathing room ensures the system remains stable when the hardware is under full load.

The 8.0 GB VRAM capacity serves as a strict boundary for your visual settings, acting as a ceiling that stays relevant throughout the life of the build. In modern titles, this amount of memory is the baseline, often requiring you to stay at 1080p and avoid the highest texture presets to maintain a smooth experience. The 256-bit bus helps move data with significant speed, yet the physical capacity is shallow enough that 1440p textures can quickly lead to stuttering. It is a build designed for the standard high-definition era, requiring a user who is comfortable managing settings rather than set-and-forget high-resolution gaming.

  • The card utilizes two standard 8-pin power connectors, which avoids the need for specialized adapters and ensures compatibility with traditional power supply cables.
  • A full PCIe 4.0 x16 interface provides the maximum available bandwidth, ensuring the card does not suffer from the performance penalties sometimes found on budget hardware with fewer lanes.
  • The hardware is built on the Xe-HPG architecture, which introduced dedicated silicon for complex tasks like ray tracing and AI-enhanced upscaling.
  • Integrating this hardware into your build requires a motherboard that supports Resizable BAR, as the architecture relies heavily on this feature to function at its intended speed.
  • Early software hurdles have largely been addressed through consistent updates, though the platform still requires a more hands-on approach to driver management than established rivals.

Building with the Arc A580 means accepting a specific kind of technical friction in exchange for its unique feature set. You are choosing a path that prioritizes raw bandwidth and modern architecture over the polished, plug-and-play nature of more expensive ecosystems. Because it draws a notable amount of electricity for its performance class, the noise and heat from your cooling fans will be a constant presence during heavy sessions. It serves as a gritty, capable entry point into modern computing for those who understand that the 8.0 GB limit and the thermal output are the primary trade-offs for its launch MSRP of $179.

GeForce RTX 4060 Ti 8GB
Full Tech Specs:
Feature Specification
Name GeForce RTX 4060 Ti 8GB
MSRP $399
Release Date 2023-05-18
Chipset Manufacturer NVIDIA
Memory Size 8 GB
Memory Type GDDR6
Memory Bus 128 bit
Memory Clock 2250 MHz
Memory Bandwidth 288.0 GB/s
Base Clock 2310 MHz
Boost Clock 2535 MHz
Shading Units 4352
Ray Tracing Cores 34
TMUs 136
ROPs 48
Pixel Rate 121.7 GPixel/s
Texture Rate 344.8 GTexel/s
Compute Power (FP16) 22.1 TFLOPS
Compute Power (FP32) 22.1 TFLOPS
Compute Power (FP64) 344.8 GFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x8
Power Connectors 1x 16-pin
TDP 160 W
Suggested PSU (Minimum) 550 W
Intel Arc A580
Full Tech Specs:
Feature Specification
Name Intel Arc A580
MSRP $179
Release Date 2023-10-10
Chipset Manufacturer Intel
Memory Size 8 GB
Memory Type GDDR6
Memory Bus 256 bit
Memory Clock 2000 MHz
Memory Bandwidth 512.0 GB/s
Base Clock 1700 MHz
Boost Clock 2000 MHz
Shading Units 3072
Ray Tracing Cores 24
TMUs 192
ROPs 96
Pixel Rate 192 GPixel/s
Texture Rate 384 GTexel/s
Compute Power (FP16) 24.6 TFLOPS
Compute Power (FP32) 12.3 TFLOPS
Compute Power (FP64) 1.5 TFLOPS
Architecture Xe-HPG
Process Size 6 nm
Interface PCIe 4.0 x16
Power Connectors 2x 8-pin
TDP 175 W
Suggested PSU 550 W

Final Verdict

Choosing between the GeForce RTX 4060 Ti 8GB and the Intel Arc A580 comes down to whether you prefer polished reliability or a budget entry point for secondary features. The GeForce RTX 4060 Ti 8GB is built on the Ada Lovelace architecture which focusing heavily on power efficiency and specialized AI hardware. It draws significantly less power during heavy workloads than the Intel card despite delivering much better results in modern titles. This efficiency means less heat and lower strain on your power supply over long gaming sessions. Intel uses the older Xe-HPG architecture for the Arc A580 and while it technically has a wider memory bus it cannot match the raw throughput or driver stability that NVIDIA offers.

The software stack is where the divide grows even wider for most users. The GeForce RTX 4060 Ti 8GB supports DLSS 3 with Frame Generation which can make a massive difference in perceived smoothness for demanding games. The Intel Arc A580 relies on XeSS which is a solid upscaler but lacks the same level of industry wide implementation and frame interpolation maturity. While the A580 is a competent card for a lower MSRP it requires more power and often demands more troubleshooting from the user. NVIDIA provides a set and forget experience that justifies the premium for anyone who actually wants to spend their time playing games rather than tweaking settings or waiting for driver updates to fix specific bugs. The hardware acceleration for ray tracing is also noticeably more capable on the NVIDIA side during complex lighting scenarios. Efficiency is a major factor here because the GeForce RTX 4060 Ti 8GB manages its performance on a modest power budget while the A580 runs much hotter and less efficiently overall.

  • Performance: The GeForce RTX 4060 Ti 8GB holds a clear lead in nearly every category from standard rasterization to complex ray tracing tasks.
  • Efficiency: NVIDIA uses a 5nm process to keep power draw around 160W while the Intel card runs at significantly higher wattage on a 6nm node.
  • Software: DLSS 3 provides a massive advantage for high refresh gaming that the Intel software suite cannot currently match in sheer volume of supported titles.
  • Stability: Years of driver development give the GeForce RTX 4060 Ti 8GB a major edge in day one game compatibility and professional application support.

Buy GeForce RTX 4060 Ti 8GB if you want the best possible efficiency and access to DLSS 3 features for a smooth high refresh rate experience. Buy Intel Arc A580 if you are working with a very tight budget at launch MSRP and prioritize having a modern encoder like AV1 over maximum frame rates.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.