GeForce RTX 4070 Ti Super vs GeForce RTX 5060

Winner:
GeForce RTX 4070 Ti Super
Main Difference:
Twice the memory capacity and significantly higher memory bandwidth for better performance scaling.
Page Summary:
GeForce RTX 4070 Ti Super holds a massive lead due to its 16GB memory buffer which prevents the performance degradation and texture loading issues found on the 8GB card.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 4070 Ti Super

MSRP:
$799
See Current Price
Spec Sheet:
Core Count:
8448
Thread Count:
Base Clock:
2340 MHz
Boost Clock:
2610 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
285 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2024-01-08
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
74.1
72.9
1440p
64.3
58
4K
50
50
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

GeForce RTX 5060

MSRP:
$299
See Current Price
Spec Sheet:
Core Count:
3840
Thread Count:
Base Clock:
2280 MHz
Boost Clock:
2497 MHz
Integrated Graphics:
VRAM:
8.0 GB
L3 Cache:
8.0 GB
TDP:
145 W
Socket:
128 bit
Bus Width:
128 bit
Release Date:
2025-05-19
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
44.5
36.1
1440p
31.9
23.8
4K
18.7
14.1
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 4070 Ti Super
Gaming Analysis:

The GeForce RTX 4070 Ti Super serves as a high-end solution for enthusiast-grade gaming, specifically targeting those who want to push high settings at 1440p without the compromises found in lower-tier hardware. While the silicon possesses enough raw power to navigate titles at 4K, its primary strength lies in maintaining fluid motion and dense detail on ultra-wide or high-speed displays. This hardware effectively addresses the throughput limitations of earlier models by expanding the memory interface and widening the data paths, which keeps frametimes steady when the action on screen becomes intense.

A significant hardware shift here is the 16GB GDDR6X VRAM buffer, which removes the pressure of managing texture budgets in modern titles. With this capacity, you can dial up the visual fidelity in demanding games without the looming threat of asset pop-in or stuttering. Because the card uses a 256-bit bus width to move data, it avoids the local bottlenecks that often impact cards with smaller memory pools during high-fidelity asset loading. This architectural change provides a sturdy long-term foundation for upcoming software releases that demand more from a GPU's memory subsystem.

Ray tracing is a core strength of the Ada Lovelace architecture, and with 66 dedicated RT cores, this card handles complex light calculations and reflections with significant headroom. It manages the heavy computational load of path tracing by utilizing Frame Generation to sustain smooth visual delivery. Unlike hardware that struggles when ray-traced shadows are enabled, this card maintains a balance between high-end visual features and responsive input, ensuring that advanced lighting feels like a part of the experience rather than a burden on the system.

  • 1440p Performance: Effortless dominance. You can expect very high frame rates across the modern AAA catalog even when the settings are pushed to their limits.
  • 4K Performance: Capability with consideration. High-resolution gaming is possible, though you will likely want to utilize DLSS to keep the motion fluid in the most demanding titles.
  • Texture Quality: Broad flexibility. The 16GB memory pool ensures that high-resolution textures stay loaded and crisp even during long sessions in open-world environments.
  • Ray Tracing: Fully playable. The dedicated hardware allows you to keep advanced lighting and reflection effects active while still enjoying a sharp and responsive image.
GeForce RTX 5060
Gaming Analysis:

The GeForce RTX 5060 functions as a targeted solution for 1080p gaming. Attempting to drive high-resolution panels with this hardware often leads to a compromised experience because the silicon lacks the raw horsepower to manage heavy pixel loads without substantial help from software upscaling. At its native 1080p target, the card provides a fluid experience in competitive shooters like Counter-Strike 2 and Valorant. In these titles, it maintains the high frame rates necessary for responsive movement. The behavior changes when moving into the latest flagship titles like Cyberpunk 2077 or Hogwarts Legacy, where you can expect a stable image as long as you respect the hardware boundaries.

The 8GB VRAM buffer acts as a firm ceiling on your visual settings. Modern games frequently demand more than 8GB of memory to load high-quality textures, and hitting that limit can cause noticeable hitching or stuttering. In demanding releases like Indiana Jones and the Great Circle or Stalker 2, the 8GB capacity is a physical constraint. To maintain consistent frame delivery and avoid sudden performance drops, many players will need to adjust texture sliders to Medium or High. This card is not designed for those who insist on Ultra presets across the board. It is built for the player who wants a reliable 1080p machine with a modest power profile.

  • 1080p Performance: The Blackwell architecture is most effective at this resolution, where it delivers clear visuals and steady motion across a wide library of games.
  • Ray Tracing Realities: While the 30 dedicated RT cores facilitate advanced lighting, enabling heavy effects in demanding titles is usually a heavy trade-off. Complex reflections and global illumination can significantly impact performance, making the gameplay feel heavy unless you reduce other settings.
  • DLSS 4 and Frame Generation: The inclusion of Multi-Frame Generation provides a way to increase perceived smoothness through the new hardware. This is the primary way the card remains viable if you attempt to play at 1440p, though it produces the best results when the base performance is already stable to avoid sluggish input.
  • Memory and Bandwidth: The 128-bit bus and GDDR7 memory are fast but narrow. You may see performance degradation in memory-intensive scenarios compared to cards with larger buffers because the architecture is frequently waiting for data to move through the limited pipeline.
GeForce RTX 4070 Ti Super
Productivity Analysis:

While this hardware excels in high-refresh environments, it proves its worth when you transition from entertainment to professional production. Moving from 1440p gaming to a complex creative timeline often exposes where standard hardware begins to struggle, but the GeForce RTX 4070 Ti Super avoids typical bottlenecks by leveraging a 256-bit memory bus and a 16GB VRAM buffer. This configuration provides a stable foundation for projects that require significant memory headroom, such as high-resolution video editing or 3D scene assembly, where a lack of local memory can otherwise stall a workflow. It functions as a reliable workstation solution that offers flagship-level memory stability without the investment required for top-tier enthusiast cards.

The 16GB capacity serves as a critical threshold for creative software. In 3D rendering and video production, smaller memory pools often force the system to rely on slower system RAM, which can turn a brief export into a frustratingly long wait. With this much dedicated space, you can maintain a fluid multitasking environment where applications like Premiere Pro and Photoshop remain responsive even while a background render is active. This overhead ensures that large textures and complex geometric data stay on the card, preserving the speed of your interactions and eliminating the need to constantly monitor resource usage or close secondary tasks to free up space.

The Ada Lovelace architecture provides deep integration with professional software suites through the CUDA ecosystem, which remains a standard for reliability in rendering and AI tasks. Dual 8th Generation NVENC encoders allow for efficient video exports by effectively distributing the processing workload, which reduces the time spent waiting for a project to finish. These dedicated engines also handle the demands of high-quality broadcasting, ensuring that a live stream does not impact the responsiveness of the primary application. Furthermore, the 264 fourth-gen Tensor cores accelerate AI-driven features such as localized masking and upscaling, turning manual adjustments into near-instant results that respect your time.

  • Memory Throughput: The 672.3 GB/s bandwidth provides the necessary speed for scrubbing through complex 4K timelines without experiencing the lag or stuttering common on hardware with narrower data paths.
  • Software Compatibility: Professional drivers and extensive support from major creative developers ensure that the hardware remains stable and efficient throughout long production sessions.
  • AI Acceleration: Dedicated Tensor cores enable local execution of AI model inference and generative tools, providing professional-grade speeds for modern creative workflows.
  • Future-Proof Encoding: Hardware-level AV1 support offers a significant advantage for high-fidelity streaming and video archiving, delivering better visual quality at efficient bitrates.
  • System Power: To ensure a stable environment under full professional loads, a high-quality 750W power supply is recommended for this configuration.
GeForce RTX 5060
Productivity Analysis:

While the GeForce RTX 5060 handles gaming with competence, shifting into a professional workflow requires a different perspective on how this Blackwell hardware manages pressure. You should view this card as a specialized tool for entry-level creative work where project size stays within predictable bounds. The core architecture is responsive during active editing, but the 8.0 GB of GDDR7 memory acts as a definitive physical boundary when you transition from light photo adjustments to complex production environments. If you are handling standard 1080p video cuts or basic graphic design, the experience remains fluid, but the hardware will signal its limits clearly the moment you attempt to load a detailed 3D scene or a high-resolution timeline that demands more space than the buffer provides.

The memory capacity is the primary factor you must manage if you intend to use this card as a consistent workstation component. In rendering engines like Blender, a project must fit within the video memory to maintain speed, and exceeding that 8.0 GB threshold often forces the system to rely on much slower system memory. This transition usually results in significant slowdowns that can stall a workspace and extend wait times for simple visual updates. For a student or a hobbyist building their first dedicated machine, it offers a stable starting point, but professionals dealing with large-scale assets will find they spend a fair amount of time optimizing their files to stay under the hardware ceiling.

  • The CUDA Ecosystem: Choosing this architecture provides access to a deep library of software support where most creative suites prioritize stability for these specific cores. In applications like Premiere Pro or various 3D suites, this translates to fewer software errors and a more predictable experience when you are working against a tight deadline.
  • Memory Throughput: The 448.0 GB/s bandwidth helps keep the interface feeling snappy during high-resolution playback. Even though the memory pool is small, the speed at which data moves helps prevent the "sticky" feeling often found on older hardware when scrubbing through a project.
  • Video Processing: The dedicated encoding hardware manages specialized high-fidelity video formats by offloading the heavy computational work from the processor. This allows the rest of your operating system to remain responsive while the GPU handles the background labor of rendering out a video file.
  • Compute Performance: With 19.2 TFLOPS of power available for specific math operations, the card handles modern AI-accelerated tasks with efficiency. Tools like noise reduction or automated masking in photo editors process significantly faster on these dedicated Blackwell cores than they would on a standard CPU.
  • Interface Constraints: You should be aware that the 128-bit bus creates a narrow path for data movement. This limitation becomes most apparent when you try to export very large assets or attempt to run multiple heavy creative applications at the same time, which can lead to a sense of congestion.

Efficiency is the defining trait of this card for a compact workstation build. It is a reliable engine that avoids the stability issues sometimes found in less established ecosystems, provided you keep your project scope realistic. You receive the latest architectural benefits and the security of refined drivers, which makes it a safe choice for those who value a consistent work environment over raw scale. This card serves the creator who needs a predictable machine that operates within a modest power profile and does not require a massive power supply, as a 450W unit is generally sufficient for the entire system.

GeForce RTX 4070 Ti Super
Feature Analysis:

A 285W TDP means that managing heat and air volume inside your chassis is the primary physical constraint for this build. While the silicon is efficient for the performance it provides, that much power requires a case with high airflow and a power supply capable of absorbing sudden electrical transients. Although official specifications often suggest a 600W minimum, a 750W unit is the practical floor for maintaining long-term stability and protecting your components from the voltage spikes common in the Ada Lovelace architecture. Skimping on the power delivery here risks unexpected shutdowns or thermal throttling when the card is pushed during intense rendering or high-fidelity gaming sessions.

The card relies on a single 16-pin power connector, which introduces specific physical requirements for your internal cable management. These high-density cables are notoriously stiff and require a significant amount of straight clearance before they can be safely bent toward the power supply. If your chassis is narrow, you must ensure there is enough room between the GPU and the side panel to avoid putting lateral pressure on the connector, as a secure and flush seating is mandatory for a safe connection. By moving to the Super variant, you have also opted into a 256-bit memory bus that avoids the data bottlenecks found on cards with narrower interfaces, providing a much cleaner path for high-resolution assets and complex textures.

Choosing this hardware is effectively a decision to pay for the reliability and maturity of a well-established software ecosystem. You are gaining access to a suite of features that prioritize visual stability and consistent frame delivery over raw hardware specs alone. This build reality is less about searching for a bargain and more about securing a predictable experience where drivers and software integration just work. The 16GB VRAM buffer ensures that you have enough headroom to ignore texture settings menus for the foreseeable future, making the system feel reliable even as software demands continue to climb.

  • Power Delivery: A 750W power supply is recommended to provide the necessary electrical buffer for the transients and sustained loads this architecture demands.
  • Cable Management: The 16-pin power interface requires careful routing and sufficient clearance from the side panel to ensure a fully seated and secure connection.
  • Interface Bandwidth: Running on a full PCIe 4.0 x16 interface ensures that the GPU has unrestricted access to system resources without the compromises seen on lower-tier cards.
  • Thermal Design: The 285W heat output necessitates a case with a clear path for intake and exhaust to prevent hot air from recirculating and impacting other components.
  • Memory Headroom: The 16GB configuration provides a comfortable ceiling for 4K textures and high-resolution assets, reducing the likelihood of stuttering caused by memory overfilling.
GeForce RTX 5060
Feature Analysis:

The 8.0 GB VRAM buffer represents the definitive physical boundary for this hardware as we move further into the decade. While the Blackwell architecture introduces refined data handling, that specific memory capacity ensures the card remains a specialized tool for 1080p environments rather than a flexible solution for higher resolutions. If you attempt to load high-resolution texture packs at 1440p, the 128-bit bus may struggle to move assets quickly enough to prevent stuttering or frame time inconsistencies during fast movement. It is a capable engine for its class, but you must accept that it is built for a lifestyle of balanced settings in the most demanding upcoming titles.

A 145 W TDP places this card firmly in the power-efficient category, which simplifies your cooling strategy and prevents the system from generating excessive heat in smaller cases. While the official minimum power specification is 300 W, that figure leaves little room for the power spikes common during intensive gaming sessions. To ensure the system remains stable when both the GPU and CPU reach high utilization, you should install a 450W power supply. This extra capacity provides the necessary electrical headroom to protect your hardware from unexpected shutdowns under load.

  • Interface Selection: The PCIe 5.0 x8 interface is a factor to consider if you are upgrading an older machine with a PCIe 3.0 motherboard, as the limited lane count can impact bandwidth available for asset streaming.
  • Simple Connectivity: You can use a standard 1x 8-pin power connector with this model, allowing you to utilize traditional power cables without requiring specialized adapters or specific ATX 3.1 power supply upgrades.
  • Architecture Benefits: Building with Blackwell 2.0 provides access to the latest architectural efficiencies and driver optimizations, ensuring the card remains compatible with modern software features for several years.
  • Form Factor Versatility: The modest power requirements and thermal output of this 145 W chip usually result in smaller physical card dimensions, making it an excellent candidate for compact builds where space is restricted.
  • Reliability: The refined manufacturing process allows for a predictable experience where the card operates within a narrow thermal window, reducing the stress on your other internal components over time.

This is a hardware solution for the pragmatic builder who prioritizes a clean and straightforward assembly process. It provides the stability of the latest architecture without the physical complications of oversized dimensions or intense cooling requirements. You receive the benefits of the TSMC N4 process and a highly efficient power profile, but the 8.0 GB memory pool dictates your maximum visual settings. It functions as a reliable and predictable 1080p engine that stays within its lane while maintaining a quiet and cool presence inside your chassis.

GeForce RTX 4070 Ti Super
Full Tech Specs:
Feature Specification
Name GeForce RTX 4070 Ti Super
MSRP $799
Release Date 2024-01-08
Chipset Manufacturer NVIDIA
Memory Size 16 GB
Memory Type GDDR6X
Memory Bus 256 bit
Memory Clock 1313 MHz
Memory Bandwidth 672.3 GB/s
Base Clock 2340 MHz
Boost Clock 2610 MHz
Shading Units 8448
Ray Tracing Cores 66
TMUs 264
ROPs 96
Pixel Rate 250.6 GPixel/s
Texture Rate 689 GTexel/s
Compute Power (FP16) 44.1 TFLOPS
Compute Power (FP32) 44.1 TFLOPS
Compute Power (FP64) 689.0 GFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 1x 16-pin
TDP 285 W
Suggested PSU (Minimum) 700 W
GeForce RTX 5060
Full Tech Specs:
Feature Specification
Model GeForce RTX 5060
MSRP $299
Release Date 2025-05-19
Chipset Manufacturer NVIDIA
Memory Size 8 GB
Memory Type GDDR7
Memory Bus 128 bit
Memory Clock 1750 MHz
Memory Bandwidth 448.0 GB/s
Base Clock 2280 MHz
Boost Clock 2497 MHz
Shading Units 3840
Ray Tracing Cores 30
TMUs 120
ROPs 48
Pixel Rate 119.9 GPixel/s
Texture Rate 299.6 GTexel/s
Compute Power (FP16) 19.2 TFLOPS
Compute Power (FP32) 19.2 TFLOPS
Compute Power (FP64) 299.6 GFLOPS
Architecture Blackwell 2.0
Process Size 5 nm
Interface PCIe 5.0 x8
Power Connectors 1x 8-pin
TDP 145 W
Suggested PSU (Minimum) 400 W

Final Verdict

The GeForce RTX 4070 Ti Super stands as the superior choice for users demanding high fidelity and longevity. While the GeForce RTX 5060 launched with a $299 MSRP, its 8GB memory buffer serves as a strict limitation for modern software environments. Demanding titles often exceed this capacity even at standard settings, which leads to stuttering or visual artifacts when the card runs out of overhead. The GeForce RTX 4070 Ti Super utilizes a 16GB GDDR6X configuration that provides a massive safety net for high resolution textures and complex lighting effects. This headroom ensures smooth frame delivery where the smaller card might falter or require significant settings reductions.

For professional workloads and creative tasks, the difference is even more pronounced. The GeForce RTX 4070 Ti Super features a 256-bit bus and 672 GB/s bandwidth, creating a much faster path for moving data during heavy rendering or video work. The GeForce RTX 5060 uses a narrower 128-bit bus which restricts its potential in data-heavy applications despite its newer architecture. While the GeForce RTX 5060 is more power efficient with its lower draw, the GeForce RTX 4070 Ti Super justifies its power requirements by offering a tier of performance that feels far more stable over long sessions. The higher memory capacity is not just a luxury but a requirement for anyone looking to maintain high visual standards over the next several years.

  • Buy GeForce RTX 4070 Ti Super if: you need 16GB of memory for complex textures, plan on using maximum settings in modern titles, or require high bandwidth for 3D rendering and professional video editing.
  • Buy GeForce RTX 5060 if: you are working with a $299 MSRP budget, prioritize low power consumption, and do not mind lowering settings to accommodate the 8GB memory limit.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.