GeForce RTX 4070 Ti Super vs Intel Arc A770 16GB

Winner:
GeForce RTX 4070 Ti Super
Main Difference:
Superior ray tracing and high-resolution performance for a much higher launch price.
Page Summary:
GeForce RTX 4070 Ti Super is the dominant choice for enthusiasts who want maximum performance and stable drivers. While much more expensive at $799 MSRP compared to the Intel card at $329 MSRP, it offers significantly better technology for high-fidelity gaming and professional rendering tasks.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 4070 Ti Super

MSRP:
$799
See Current Price
Spec Sheet:
Core Count:
8448
Thread Count:
Base Clock:
2340 MHz
Boost Clock:
2610 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
285 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2024-01-08
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
74.1
72.9
1440p
64.3
58
4K
50
50
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Intel Arc A770 16GB

MSRP:
$329
See Current Price
Spec Sheet:
Core Count:
4096
Thread Count:
Base Clock:
2100 MHz
Boost Clock:
2400 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
225 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2022-10-12
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
29.8
29.2
1440p
25.7
23.6
4K
21
19.4
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 4070 Ti Super
Gaming Analysis:

The GeForce RTX 4070 Ti Super serves as a high-end solution for enthusiast-grade gaming, specifically targeting those who want to push high settings at 1440p without the compromises found in lower-tier hardware. While the silicon possesses enough raw power to navigate titles at 4K, its primary strength lies in maintaining fluid motion and dense detail on ultra-wide or high-speed displays. This hardware effectively addresses the throughput limitations of earlier models by expanding the memory interface and widening the data paths, which keeps frametimes steady when the action on screen becomes intense.

A significant hardware shift here is the 16GB GDDR6X VRAM buffer, which removes the pressure of managing texture budgets in modern titles. With this capacity, you can dial up the visual fidelity in demanding games without the looming threat of asset pop-in or stuttering. Because the card uses a 256-bit bus width to move data, it avoids the local bottlenecks that often impact cards with smaller memory pools during high-fidelity asset loading. This architectural change provides a sturdy long-term foundation for upcoming software releases that demand more from a GPU's memory subsystem.

Ray tracing is a core strength of the Ada Lovelace architecture, and with 66 dedicated RT cores, this card handles complex light calculations and reflections with significant headroom. It manages the heavy computational load of path tracing by utilizing Frame Generation to sustain smooth visual delivery. Unlike hardware that struggles when ray-traced shadows are enabled, this card maintains a balance between high-end visual features and responsive input, ensuring that advanced lighting feels like a part of the experience rather than a burden on the system.

  • 1440p Performance: Effortless dominance. You can expect very high frame rates across the modern AAA catalog even when the settings are pushed to their limits.
  • 4K Performance: Capability with consideration. High-resolution gaming is possible, though you will likely want to utilize DLSS to keep the motion fluid in the most demanding titles.
  • Texture Quality: Broad flexibility. The 16GB memory pool ensures that high-resolution textures stay loaded and crisp even during long sessions in open-world environments.
  • Ray Tracing: Fully playable. The dedicated hardware allows you to keep advanced lighting and reflection effects active while still enjoying a sharp and responsive image.
Intel Arc A770 16GB
Gaming Analysis:

The Intel Arc A770 16GB handles higher resolutions with more competence than its mid-range peers. While 1080p is a trivial task for this hardware, the card feels more at home at 1440p where its bandwidth can actually stretch. It sits in a space where it delivers steady performance at high settings, though it lacks the raw horsepower to maintain a smooth experience if you push into 4K territory. It relies heavily on modern software APIs like DirectX 12 and Vulkan to achieve its full potential.

The 16GB VRAM buffer is the primary mechanical advantage here. Many cards at the $329 MSRP launch price are limited by narrower memory pools, which often leads to stuttering when forcing high-resolution textures in modern titles. With this card, you can push texture sliders to their limit without seeing the blurry assets or sudden hitching that plague hardware with smaller buffers. It provides a level of texture headroom that is rare for this tier of GPU.

Ray tracing performance on the Xe-HPG architecture is notable for its stability. While some mid-range GPUs treat lighting effects as a box-ticking feature that renders a game unplayable, the A770 maintains respectable frame stability with these effects active. You can expect reflections and shadows to look sharp without turning the experience into a slideshow. While heavy path-tracing remains out of reach, standard ray-traced effects are a realistic choice when paired with upscaling.

  • The 256-bit memory bus ensures that high-resolution data travels quickly, which helps keep gameplay fluid during visually dense scenes.
  • XeSS upscaling is a vital tool for demanding titles, allowing you to recover performance in heavy games by reconstructing the image from a lower internal resolution.
  • Drivers remain a variable to watch because older games built on DirectX 11 sometimes feel less polished compared to modern releases that utilize newer code.
  • The power requirements are a factor to consider, as this card pulls more than 200W and will necessitate a 650W power supply to ensure system stability.

This hardware suits gamers who refuse to compromise on texture quality. It is a capable 1440p machine that excels in modern, heavyweight titles where its massive memory pool can shine. It avoids the hardware limitations that often stifle other affordable GPUs, making it a strategic choice for anyone tired of running into memory bottlenecks.

GeForce RTX 4070 Ti Super
Productivity Analysis:

While this hardware excels in high-refresh environments, it proves its worth when you transition from entertainment to professional production. Moving from 1440p gaming to a complex creative timeline often exposes where standard hardware begins to struggle, but the GeForce RTX 4070 Ti Super avoids typical bottlenecks by leveraging a 256-bit memory bus and a 16GB VRAM buffer. This configuration provides a stable foundation for projects that require significant memory headroom, such as high-resolution video editing or 3D scene assembly, where a lack of local memory can otherwise stall a workflow. It functions as a reliable workstation solution that offers flagship-level memory stability without the investment required for top-tier enthusiast cards.

The 16GB capacity serves as a critical threshold for creative software. In 3D rendering and video production, smaller memory pools often force the system to rely on slower system RAM, which can turn a brief export into a frustratingly long wait. With this much dedicated space, you can maintain a fluid multitasking environment where applications like Premiere Pro and Photoshop remain responsive even while a background render is active. This overhead ensures that large textures and complex geometric data stay on the card, preserving the speed of your interactions and eliminating the need to constantly monitor resource usage or close secondary tasks to free up space.

The Ada Lovelace architecture provides deep integration with professional software suites through the CUDA ecosystem, which remains a standard for reliability in rendering and AI tasks. Dual 8th Generation NVENC encoders allow for efficient video exports by effectively distributing the processing workload, which reduces the time spent waiting for a project to finish. These dedicated engines also handle the demands of high-quality broadcasting, ensuring that a live stream does not impact the responsiveness of the primary application. Furthermore, the 264 fourth-gen Tensor cores accelerate AI-driven features such as localized masking and upscaling, turning manual adjustments into near-instant results that respect your time.

  • Memory Throughput: The 672.3 GB/s bandwidth provides the necessary speed for scrubbing through complex 4K timelines without experiencing the lag or stuttering common on hardware with narrower data paths.
  • Software Compatibility: Professional drivers and extensive support from major creative developers ensure that the hardware remains stable and efficient throughout long production sessions.
  • AI Acceleration: Dedicated Tensor cores enable local execution of AI model inference and generative tools, providing professional-grade speeds for modern creative workflows.
  • Future-Proof Encoding: Hardware-level AV1 support offers a significant advantage for high-fidelity streaming and video archiving, delivering better visual quality at efficient bitrates.
  • System Power: To ensure a stable environment under full professional loads, a high-quality 750W power supply is recommended for this configuration.
Intel Arc A770 16GB
Productivity Analysis:

While this hardware handles recreation with ease, the Intel Arc A770 16GB serves as a surprisingly serious tool for those who need to get work done. Many specialized users view this card as an experimental gaming piece, but that is a mistake if your workday involves software like Premiere Pro or DaVinci Resolve. The professional side of this architecture feels remarkably stable because the 16GB VRAM buffer removes the mechanical bottlenecks that usually cripple mid-range workstation builds during heavy rendering or complex 3D modeling tasks.

The massive memory pool is a hard requirement for stability when you are working with large assets. If you try to edit a complex 4K timeline or render a dense 3D scene on an 8GB card, you eventually reach a point where the software might slow down or default to system memory, which effectively pauses your progress. Having sixteen gigabytes allows you to keep multiple creative applications open simultaneously without the system gasping for air. It provides a level of headroom that is difficult to find among other cards launched at the $329 MSRP, where competitors often limit memory capacity to differentiate their more expensive tiers.

General computing tasks benefit from the high memory bandwidth, which keeps the experience of scrubbing through video timelines feeling responsive and snappy. You do not get that sluggish, lagging sensation when moving the playhead across a sequence heavy with effects. The 256-bit bus ensures a high volume of data reaches the 4096 shading units quickly, so they rarely sit idle while waiting for assets to load from the drive. For those experimenting with local generative AI, the high compute throughput means this card manages complex mathematical tasks with a level of speed that rivals much more expensive hardware.

  • The dual media engines provide full hardware acceleration for AV1 encoding and 4:2:2 HEVC decoding, offering performance levels traditionally reserved for flagship enterprise components.
  • Deep Link technology can be a significant time-saver if you pair this with a compatible Intel processor, allowing the integrated and discrete graphics to share the heavy lifting of video exports.
  • Application stability is excellent in modern creative suites, though you might encounter less predictable behavior in older legacy CAD software designed specifically for other driver architectures.
  • The power requirements are a factor to remember during long project sessions, as the card pulls a steady 225W and necessitates a 650W power supply to keep the system running under full load.
  • The high bandwidth and memory capacity make this a strategic choice for high-resolution texture work and complex 3D environments that would saturate smaller buffers.

You might pay for a more established ecosystem with other brands, but Intel is offering a workstation-style tool for the user who hates arbitrary hardware limits. It is a capable workhorse for 3D modeling and high-bitrate video work that values your time and project size. This card avoids the artificial restrictions that often stifle other affordable GPUs, making it a functional choice for anyone who needs to handle massive files without the threat of constant memory bottlenecks.

GeForce RTX 4070 Ti Super
Feature Analysis:

A 285W TDP means that managing heat and air volume inside your chassis is the primary physical constraint for this build. While the silicon is efficient for the performance it provides, that much power requires a case with high airflow and a power supply capable of absorbing sudden electrical transients. Although official specifications often suggest a 600W minimum, a 750W unit is the practical floor for maintaining long-term stability and protecting your components from the voltage spikes common in the Ada Lovelace architecture. Skimping on the power delivery here risks unexpected shutdowns or thermal throttling when the card is pushed during intense rendering or high-fidelity gaming sessions.

The card relies on a single 16-pin power connector, which introduces specific physical requirements for your internal cable management. These high-density cables are notoriously stiff and require a significant amount of straight clearance before they can be safely bent toward the power supply. If your chassis is narrow, you must ensure there is enough room between the GPU and the side panel to avoid putting lateral pressure on the connector, as a secure and flush seating is mandatory for a safe connection. By moving to the Super variant, you have also opted into a 256-bit memory bus that avoids the data bottlenecks found on cards with narrower interfaces, providing a much cleaner path for high-resolution assets and complex textures.

Choosing this hardware is effectively a decision to pay for the reliability and maturity of a well-established software ecosystem. You are gaining access to a suite of features that prioritize visual stability and consistent frame delivery over raw hardware specs alone. This build reality is less about searching for a bargain and more about securing a predictable experience where drivers and software integration just work. The 16GB VRAM buffer ensures that you have enough headroom to ignore texture settings menus for the foreseeable future, making the system feel reliable even as software demands continue to climb.

  • Power Delivery: A 750W power supply is recommended to provide the necessary electrical buffer for the transients and sustained loads this architecture demands.
  • Cable Management: The 16-pin power interface requires careful routing and sufficient clearance from the side panel to ensure a fully seated and secure connection.
  • Interface Bandwidth: Running on a full PCIe 4.0 x16 interface ensures that the GPU has unrestricted access to system resources without the compromises seen on lower-tier cards.
  • Thermal Design: The 285W heat output necessitates a case with a clear path for intake and exhaust to prevent hot air from recirculating and impacting other components.
  • Memory Headroom: The 16GB configuration provides a comfortable ceiling for 4K textures and high-resolution assets, reducing the likelihood of stuttering caused by memory overfilling.
Intel Arc A770 16GB
Feature Analysis:

A typical power draw of 225W places this card in a category that demands serious attention to your system thermal management. While the base specifications might suggest lower requirements, a 650W power supply is the realistic baseline for maintaining stability when the hardware stretches during intense workloads. This thermal load means you need a case with consistent airflow and active intake fans to prevent heat from pooling around the motherboard. The use of traditional 1x 6-pin and 1x 8-pin power connectors is a practical benefit for internal cable management. You can utilize standard power cables without needing modern adapters, which simplifies the physical installation process and avoids the clearance issues associated with stiffer high-voltage wiring found on flagship parts.

The build reality for the Xe-HPG architecture hinges on your choice of motherboard and system BIOS settings. Resizable BAR is a strictly mandatory requirement for this hardware to function as intended, rather than an optional toggle for a minor boost. If you attempt to run this card on an older platform that lacks the ability to let the processor access the entire VRAM buffer at once, the data flow will tighten and cause a massive drop in efficiency. You are investing in a 16.0 GB buffer that provides a significant safety net for high-resolution textures, but that capacity is only useful if the rest of your system can communicate with it effectively. This hardware is best suited for builders who are comfortable navigating modern BIOS interfaces and keeping software environments updated.

  • The 256-bit bus and 16.0 GB of memory provide an expansive ceiling for texture-heavy environments that would typically cause stuttering on cards with smaller pools.
  • Standard PCIe power connections ensure broad compatibility with existing power supplies and remove the need for specialized cable kits.
  • A total of 4096 shading units work best when paired with the full bandwidth of the PCIe 4.0 x16 interface to maintain consistent data throughput.
  • Platform requirements mean you must verify that your motherboard supports Resizable BAR before installation to avoid severe performance limitations.
  • The high power draw requires a case design focused on exhaust efficiency to keep your other internal components from reaching high ambient temperatures.

You are getting a massive amount of memory for an MSRP of $329, but that value comes with the responsibility of managing a high-wattage component. It functions as a robust anchor for a modern PC build provided you do not cut corners on your power delivery or case ventilation. This is a strategic hardware choice for those who want to avoid the memory bottlenecks found in other mid-range options and are willing to provide the necessary electrical and thermal environment it demands. By prioritizing a solid power foundation and architectural compatibility, you can move past the technical friction that often complicates high-capacity graphics setups.

GeForce RTX 4070 Ti Super
Full Tech Specs:
Feature Specification
Name GeForce RTX 4070 Ti Super
MSRP $799
Release Date 2024-01-08
Chipset Manufacturer NVIDIA
Memory Size 16 GB
Memory Type GDDR6X
Memory Bus 256 bit
Memory Clock 1313 MHz
Memory Bandwidth 672.3 GB/s
Base Clock 2340 MHz
Boost Clock 2610 MHz
Shading Units 8448
Ray Tracing Cores 66
TMUs 264
ROPs 96
Pixel Rate 250.6 GPixel/s
Texture Rate 689 GTexel/s
Compute Power (FP16) 44.1 TFLOPS
Compute Power (FP32) 44.1 TFLOPS
Compute Power (FP64) 689.0 GFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 1x 16-pin
TDP 285 W
Suggested PSU (Minimum) 700 W
Intel Arc A770 16GB
Full Tech Specs:
Feature Specification
Name Intel Arc A770 16GB
MSRP $329
Release Date 2022-10-12
Chipset Manufacturer Intel
Memory Size 16 GB
Memory Type GDDR6
Memory Bus 256 bit
Memory Clock 2000 MHz
Memory Bandwidth 512.0 GB/s
Base Clock 2100 MHz
Boost Clock 2400 MHz
Shading Units 4096
Ray Tracing Cores 32
TMUs 256
ROPs 128
Pixel Rate 307.2 GPixel/s
Texture Rate 614.4 GTexel/s
Compute Power (FP16) 39.32 TFLOPS
Compute Power (FP32) 19.66 TFLOPS
Compute Power (FP64) 2.458 TFLOPS
Architecture Xe-HPG
Process Size 6 nm
Interface PCIe 4.0 x16
Power Connectors 1x 6-pin + 1x 8-pin
TDP 225 W
Suggested PSU 650 W

Final Verdict

The GeForce RTX 4070 Ti Super is the clear winner for anyone seeking a premium tier of performance. Built on the Ada Lovelace architecture, this card brings major efficiency gains and massive hardware advantages in complex lighting calculations. It handles demanding titles with ease and offers a much higher ceiling for performance thanks to its 66 dedicated ray tracing cores. The inclusion of DLSS 3.5 is a major factor here, as the frame generation and ray reconstruction technologies provide a much more stable and visually impressive experience than what early competitors can offer. For creative professionals, the NVIDIA Studio drivers and CUDA cores remain the industry standard for 3D modeling and video production suites. The dual encoders also help significantly when exporting high-resolution video projects.

The Intel Arc A770 16GB is a different beast entirely. It offers a surprising amount of video memory for its $329 MSRP, which helps it avoid performance walls in modern games that eat up VRAM. It is a capable card for those who prioritize value above all else and do not mind occasional driver troubleshooting. The Xe-HPG architecture is Intel's first major foray into this space, and while it lacks the raw power of the NVIDIA part, its AV1 encoding capabilities are excellent. It remains a budget-friendly option for players who want to build a capable machine without spending high-end money. However, the sheer difference in memory bandwidth and raw processing power makes the NVIDIA card a vastly more capable tool for long-term use.

  • Buy GeForce RTX 4070 Ti Super if you want the best possible experience for high-resolution gaming, professional 3D rendering, and access to the most mature feature set available.
  • Buy Intel Arc A770 16GB if you are working with a tight budget, value high VRAM capacity for texture-heavy titles, and are comfortable using Resizable BAR for optimal performance.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.