GeForce RTX 4070 Ti Super vs Intel Arc B580

Winner:
GeForce RTX 4070 Ti Super
Main Difference:
Increased VRAM capacity and wider memory bus for superior high-resolution bandwidth
Page Summary:
GeForce RTX 4070 Ti Super wins because it offers a massive performance lead in heavy workloads, featuring more memory and stronger ray tracing tech compared to the budget-focused Intel Arc B580.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 4070 Ti Super

MSRP:
$799
See Current Price
Spec Sheet:
Core Count:
8448
Thread Count:
Base Clock:
2340 MHz
Boost Clock:
2610 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
285 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2024-01-08
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
74.1
72.9
1440p
64.3
58
4K
50
50
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Intel Arc B580

MSRP:
$249
See Current Price
Spec Sheet:
Core Count:
2560
Thread Count:
Base Clock:
2670 MHz
Boost Clock:
2670 MHz
Integrated Graphics:
VRAM:
12.0 GB
L3 Cache:
12.0 GB
TDP:
190 W
Socket:
192 bit
Bus Width:
192 bit
Release Date:
2024-12-13
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
35.1
37.6
1440p
29.8
29.7
4K
24.6
23.6
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 4070 Ti Super
Gaming Analysis:

The GeForce RTX 4070 Ti Super serves as a high-end solution for enthusiast-grade gaming, specifically targeting those who want to push high settings at 1440p without the compromises found in lower-tier hardware. While the silicon possesses enough raw power to navigate titles at 4K, its primary strength lies in maintaining fluid motion and dense detail on ultra-wide or high-speed displays. This hardware effectively addresses the throughput limitations of earlier models by expanding the memory interface and widening the data paths, which keeps frametimes steady when the action on screen becomes intense.

A significant hardware shift here is the 16GB GDDR6X VRAM buffer, which removes the pressure of managing texture budgets in modern titles. With this capacity, you can dial up the visual fidelity in demanding games without the looming threat of asset pop-in or stuttering. Because the card uses a 256-bit bus width to move data, it avoids the local bottlenecks that often impact cards with smaller memory pools during high-fidelity asset loading. This architectural change provides a sturdy long-term foundation for upcoming software releases that demand more from a GPU's memory subsystem.

Ray tracing is a core strength of the Ada Lovelace architecture, and with 66 dedicated RT cores, this card handles complex light calculations and reflections with significant headroom. It manages the heavy computational load of path tracing by utilizing Frame Generation to sustain smooth visual delivery. Unlike hardware that struggles when ray-traced shadows are enabled, this card maintains a balance between high-end visual features and responsive input, ensuring that advanced lighting feels like a part of the experience rather than a burden on the system.

  • 1440p Performance: Effortless dominance. You can expect very high frame rates across the modern AAA catalog even when the settings are pushed to their limits.
  • 4K Performance: Capability with consideration. High-resolution gaming is possible, though you will likely want to utilize DLSS to keep the motion fluid in the most demanding titles.
  • Texture Quality: Broad flexibility. The 16GB memory pool ensures that high-resolution textures stay loaded and crisp even during long sessions in open-world environments.
  • Ray Tracing: Fully playable. The dedicated hardware allows you to keep advanced lighting and reflection effects active while still enjoying a sharp and responsive image.
Intel Arc B580
Gaming Analysis:

The Intel Arc B580 occupies a strong position for mainstream gaming where high-resolution textures and stable framerates meet. It functions as a high-performance choice for 1080p or a reliable option for 1440p settings. While the hardware can output at 4K, the experience often becomes heavy and inconsistent in demanding titles. You should treat this as a 1440p card to maintain the best visual fluidity.

The 12GB of VRAM acts as a generous buffer for modern games that carry a heavy texture tax. On cards with less memory, you often see sudden hitches or blurry textures that fail to load during fast movement. With 12GB of GDDR6, you can push texture settings to much higher levels without hitting a hardware ceiling. This extra headroom keeps your minimum framerates stable and helps prevent the micro-stutters that can disrupt a boss fight or a competitive match.

  • Native 1440p Performance: This hardware delivers a crisp experience in modern titles, allowing for smooth movement without strictly relying on upscaling to keep the game playable.
  • Ray Tracing Capability: Built on the Xe2-HPG architecture with 20 Ray Tracing cores, the B580 handles lighting and shadows with more competence than previous entries in this tier. It manages these effects without turning the screen into a slideshow.
  • The XeSS Advantage: If a game supports Intel upscaling and frame generation, you can significantly increase visual fluidity. This helps demanding titles feel much faster and more responsive on high-end displays.
  • Resizable BAR Requirement: This hardware depends on Resizable BAR support from your motherboard to function correctly. Without this feature enabled, you may notice a significant drop in performance where the game feels sluggish or unpredictable.
  • Driver Maturation: While the raw power is impressive for the launch MSRP of $249, you might occasionally encounter software friction. Some legacy games may require specific driver updates to resolve visual glitches.

The 192-bit bus width provides a wide enough data path to keep the GPU from choking when the screen gets busy. Compared to the narrower interfaces common in entry-level hardware, the B580 maintains better composure during chaotic scenes filled with complex geometry. It is a capable piece of hardware that prioritizes texture capacity and raw value for a high-quality gaming setup.

GeForce RTX 4070 Ti Super
Productivity Analysis:

While this hardware excels in high-refresh environments, it proves its worth when you transition from entertainment to professional production. Moving from 1440p gaming to a complex creative timeline often exposes where standard hardware begins to struggle, but the GeForce RTX 4070 Ti Super avoids typical bottlenecks by leveraging a 256-bit memory bus and a 16GB VRAM buffer. This configuration provides a stable foundation for projects that require significant memory headroom, such as high-resolution video editing or 3D scene assembly, where a lack of local memory can otherwise stall a workflow. It functions as a reliable workstation solution that offers flagship-level memory stability without the investment required for top-tier enthusiast cards.

The 16GB capacity serves as a critical threshold for creative software. In 3D rendering and video production, smaller memory pools often force the system to rely on slower system RAM, which can turn a brief export into a frustratingly long wait. With this much dedicated space, you can maintain a fluid multitasking environment where applications like Premiere Pro and Photoshop remain responsive even while a background render is active. This overhead ensures that large textures and complex geometric data stay on the card, preserving the speed of your interactions and eliminating the need to constantly monitor resource usage or close secondary tasks to free up space.

The Ada Lovelace architecture provides deep integration with professional software suites through the CUDA ecosystem, which remains a standard for reliability in rendering and AI tasks. Dual 8th Generation NVENC encoders allow for efficient video exports by effectively distributing the processing workload, which reduces the time spent waiting for a project to finish. These dedicated engines also handle the demands of high-quality broadcasting, ensuring that a live stream does not impact the responsiveness of the primary application. Furthermore, the 264 fourth-gen Tensor cores accelerate AI-driven features such as localized masking and upscaling, turning manual adjustments into near-instant results that respect your time.

  • Memory Throughput: The 672.3 GB/s bandwidth provides the necessary speed for scrubbing through complex 4K timelines without experiencing the lag or stuttering common on hardware with narrower data paths.
  • Software Compatibility: Professional drivers and extensive support from major creative developers ensure that the hardware remains stable and efficient throughout long production sessions.
  • AI Acceleration: Dedicated Tensor cores enable local execution of AI model inference and generative tools, providing professional-grade speeds for modern creative workflows.
  • Future-Proof Encoding: Hardware-level AV1 support offers a significant advantage for high-fidelity streaming and video archiving, delivering better visual quality at efficient bitrates.
  • System Power: To ensure a stable environment under full professional loads, a high-quality 750W power supply is recommended for this configuration.
Intel Arc B580
Productivity Analysis:

While the hardware is positioned for 1440p gaming, the B580 functions as a practical workstation component for those who need to manage large creative assets without a massive investment. The 12GB of VRAM serves as an essential guard against memory bottlenecks that often limit cheaper hardware to basic 1080p editing. When you are moving through a high resolution timeline or stacking several effects in a photograph, this extra memory capacity ensures you can continue working without the software locking up or warning you about limited resources. It provides a level of comfort that 8GB cards cannot match when a project grows in complexity.

The 192-bit bus width and the resulting 456 GB/s bandwidth keep the interface feeling snappy during data heavy operations. This wide path allows for faster transfers between the system memory and the GPU cache, which is especially noticeable when rotating complex 3D models or scrubbing through high bitrate video files. You are not just getting raw speed, you are getting the bandwidth necessary to prevent the stuttering playback that often plagues entry level cards with narrower bit buses. The 13.7 TFLOPS of compute power translates into a stable experience where the hardware remains responsive even under a sustained load.

  • Media Engine Performance: This architecture includes dedicated support for AV1 encoding, which allows video editors and streamers to export high quality files with better compression than older standards. It handles these tasks locally to save your CPU from becoming a bottleneck during the export process.
  • Acceleration for Tools: The inclusion of 160 XMX engines provides a dedicated path for tasks that use machine learning or AI based software features. You will see faster results when using local tools for image expansion, noise reduction, or complex masking compared to hardware that lacks specialized silicon for these calculations.
  • 3D Viewport Handling: With 20 Ray Tracing cores, the card offers enough power to maintain a workable frame rate in a rendered viewport. It allows you to see lighting changes in real time within software like Blender so you can make creative decisions without waiting for a final render.
  • Software Compatibility: Because this platform is newer than established rivals, you may find that some professional plugins or legacy applications require specific driver updates to function. It is a trade-off where the high hardware specs are balanced against occasional manual troubleshooting in less common creative suites.
  • Power and Thermal Stability: The 190W power draw means the card stays within manageable temperatures even during long render sessions. You can rely on a 550W power supply to keep the system stable without the need for an oversized chassis or excessive cooling fans.

The raw performance of the Xe2-HPG architecture makes it a strong contender for a budget workstation. Even though it does not participate in the same software ecosystem as specialized professional cards, the raw hardware value at the launch MSRP of $249 remains difficult to overlook for independent creators. This card is built for those who prioritize memory overhead and bandwidth over brand loyalty. It is a functional tool that manages to keep up with demanding creative workloads by offering a generous amount of VRAM and a wide data interface.

GeForce RTX 4070 Ti Super
Feature Analysis:

A 285W TDP means that managing heat and air volume inside your chassis is the primary physical constraint for this build. While the silicon is efficient for the performance it provides, that much power requires a case with high airflow and a power supply capable of absorbing sudden electrical transients. Although official specifications often suggest a 600W minimum, a 750W unit is the practical floor for maintaining long-term stability and protecting your components from the voltage spikes common in the Ada Lovelace architecture. Skimping on the power delivery here risks unexpected shutdowns or thermal throttling when the card is pushed during intense rendering or high-fidelity gaming sessions.

The card relies on a single 16-pin power connector, which introduces specific physical requirements for your internal cable management. These high-density cables are notoriously stiff and require a significant amount of straight clearance before they can be safely bent toward the power supply. If your chassis is narrow, you must ensure there is enough room between the GPU and the side panel to avoid putting lateral pressure on the connector, as a secure and flush seating is mandatory for a safe connection. By moving to the Super variant, you have also opted into a 256-bit memory bus that avoids the data bottlenecks found on cards with narrower interfaces, providing a much cleaner path for high-resolution assets and complex textures.

Choosing this hardware is effectively a decision to pay for the reliability and maturity of a well-established software ecosystem. You are gaining access to a suite of features that prioritize visual stability and consistent frame delivery over raw hardware specs alone. This build reality is less about searching for a bargain and more about securing a predictable experience where drivers and software integration just work. The 16GB VRAM buffer ensures that you have enough headroom to ignore texture settings menus for the foreseeable future, making the system feel reliable even as software demands continue to climb.

  • Power Delivery: A 750W power supply is recommended to provide the necessary electrical buffer for the transients and sustained loads this architecture demands.
  • Cable Management: The 16-pin power interface requires careful routing and sufficient clearance from the side panel to ensure a fully seated and secure connection.
  • Interface Bandwidth: Running on a full PCIe 4.0 x16 interface ensures that the GPU has unrestricted access to system resources without the compromises seen on lower-tier cards.
  • Thermal Design: The 285W heat output necessitates a case with a clear path for intake and exhaust to prevent hot air from recirculating and impacting other components.
  • Memory Headroom: The 16GB configuration provides a comfortable ceiling for 4K textures and high-resolution assets, reducing the likelihood of stuttering caused by memory overfilling.
Intel Arc B580
Feature Analysis:

A single 8-pin power connector provides a straightforward setup process that avoids the cable management headaches often found with newer, more rigid power standards. While the technical requirements suggest a lower floor, you should pair this hardware with a 550W power supply to ensure the system remains stable when the GPU reaches its full 190W TDP during intense workloads. Relying on a unit with more capacity than the minimum spec helps prevent unexpected restarts and ensures the voltage remains consistent across all your components. This power profile makes it a relatively low-friction upgrade for most mid-sized cases that already have decent airflow.

The PCIe 4.0 x8 interface is a specific detail that matters if you are installing this card into an older motherboard. On a PCIe 3.0 platform, the reduced bandwidth can lead to slight performance inconsistencies in specific titles that move a lot of data between the processor and the 12GB of VRAM. You will get the most reliable results by combining this hardware with a modern motherboard that supports Resizable BAR, as the Xe2-HPG architecture relies on that feature to manage its memory addresses efficiently. When these settings are not configured properly, the card might struggle to Maintain its typical responsiveness in complex 1440p environments.

  • Architecture Efficiency: Running on the Xe2-HPG platform, the hardware manages modern 1440p texture loads with better thermal composure than previous generations.
  • Cable Compatibility: The use of the standard 8-pin connector means you can use existing power supply cables without needing to buy specialized adapters or worrying about connector clearance.
  • VRAM Headroom: Having 12GB of memory offers a comfortable safety net for high-resolution assets, which is increasingly necessary as modern titles demand more space for textures and lighting data.
  • Platform Requirements: Proper Windows 11 updates and a BIOS with Resizable BAR enabled are necessary to unlock the full potential of the silicon and avoid stuttering.
  • Cooling Considerations: With a 190W power draw, the card generates enough heat that you will want at least two active intake fans in your chassis to prevent the internal air from becoming stagnant during long sessions.

The 456 GB/s bandwidth provided by the 192-bit bus width keeps the hardware from feeling restricted when many objects are on the screen. It is a practical piece of hardware that focuses on providing a wide data path and significant memory capacity for a launch MSRP of $249. Instead of leaning on a complex ecosystem of proprietary software, it provides the physical specs required to handle demanding visuals and creative rendering tasks. So long as your motherboard is relatively modern and your power supply meets the 550W recommendation, the installation is a predictable and rewarding process.

GeForce RTX 4070 Ti Super
Full Tech Specs:
Feature Specification
Name GeForce RTX 4070 Ti Super
MSRP $799
Release Date 2024-01-08
Chipset Manufacturer NVIDIA
Memory Size 16 GB
Memory Type GDDR6X
Memory Bus 256 bit
Memory Clock 1313 MHz
Memory Bandwidth 672.3 GB/s
Base Clock 2340 MHz
Boost Clock 2610 MHz
Shading Units 8448
Ray Tracing Cores 66
TMUs 264
ROPs 96
Pixel Rate 250.6 GPixel/s
Texture Rate 689 GTexel/s
Compute Power (FP16) 44.1 TFLOPS
Compute Power (FP32) 44.1 TFLOPS
Compute Power (FP64) 689.0 GFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 1x 16-pin
TDP 285 W
Suggested PSU (Minimum) 700 W
Intel Arc B580
Full Tech Specs:
Feature Specification
Model Name Intel Arc B580
MSRP $249
Release Date 2024-12-13
Manufacturer Intel
Memory Size 12 GB
Memory Type GDDR6
Memory Bus 192 bit
Memory Clock 2375 MHz
Memory Bandwidth 456.0 GB/s
Base Clock 2670 MHz
Boost Clock 2670 MHz
Shading Units 2560
Ray Tracing Cores 20
TMUs 160
ROPs 80
Pixel Rate 213.6 GPixel/s
Texture Rate 427.2 GTexel/s
Compute Power (FP16) 27.3 TFLOPS
Compute Power (FP32) 13.7 TFLOPS
Compute Power (FP64) 1.7 TFLOPS
Architecture Xe2-HPG
Process Size 5 nm
Interface PCIe 4.0 x8
Power Connectors 1x 8-pin
TDP 190 W
Suggested PSU 550 W

Final Verdict

The GeForce RTX 4070 Ti Super stands out as the superior choice for anyone prioritizing uncompromised hardware performance and a mature software ecosystem. Its 16GB of GDDR6X VRAM on a 256-bit bus provides massive bandwidth for heavy textures and complex scenes, preventing the memory limitations that often hinder lower-capacity cards. In demanding gaming scenarios, it delivers a smooth experience even in titles with heavy lighting effects, utilizing DLSS 3.5 with frame generation and ray reconstruction. These are advanced features the Intel Arc B580 cannot match due to its simpler architecture and lower peak compute throughput. For professionals, the NVIDIA card benefits from the established CUDA platform, including OptiX for rendering and the NVENC encoder, making it a reliable tool for creative work. The Intel Arc B580 offers interesting value with 12GB of VRAM and an MSRP of $249, but it remains a entry-level option by comparison.

  • System Bandwidth: The NVIDIA card utilizes a full PCIe 4.0 x16 interface and high-speed GDDR6X memory, whereas the Intel card uses a narrower PCIe 4.0 x8 bus that might see limitations on older motherboard revisions.
  • Ray Tracing Tech: With dedicated third-gen RT cores, the RTX 4070 Ti Super handles light and shadow calculations far more efficiently than the second-gen hardware found in the Intel competitor.
  • Reliability: NVIDIA has spent years refining its drivers for stability across thousands of titles, while the Intel Arc platform is still growing and may require more frequent software updates to maintain performance.
  • Power Needs: While the RTX 4070 Ti Super requires significantly more power and a beefier supply, the massive jump in raw shading units justifies the extra electricity.

Buy GeForce RTX 4070 Ti Super if you demand the best gaming and creative performance, have a higher budget, and want the most stable software ecosystem. Buy Intel Arc B580 if you are building a cost-effective PC primarily for mid-range gaming and are willing to navigate driver updates and accept lower performance ceilings.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.