GeForce RTX 4070 Ti Super vs Radeon RX 7700 XT

Winner:
GeForce RTX 4070 Ti Super
Main Difference:
Higher memory capacity and advanced lighting features compared to a mid-range rasterization alternative
Page Summary:
GeForce RTX 4070 Ti Super is the winner because it provides superior memory bandwidth and specialized hardware for lighting effects while maintaining a substantial performance advantage over the Radeon RX 7700 XT, justifying its higher launch MSRP for enthusiasts and power users.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 4070 Ti Super

MSRP:
$799
See Current Price
Spec Sheet:
Core Count:
8448
Thread Count:
Base Clock:
2340 MHz
Boost Clock:
2610 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
285 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2024-01-08
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
74.1
72.9
1440p
64.3
58
4K
50
50
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Radeon RX 7700 XT

MSRP:
$399
See Current Price
Spec Sheet:
Core Count:
3456
Thread Count:
Base Clock:
1435 MHz
Boost Clock:
2544 MHz
Integrated Graphics:
VRAM:
12.0 GB
L3 Cache:
12.0 GB
TDP:
245 W
Socket:
192 bit
Bus Width:
192 bit
Release Date:
2023-08-25
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
49.8
41.8
1440p
42.4
32.4
4K
32.7
23.7
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 4070 Ti Super
Gaming Analysis:

The GeForce RTX 4070 Ti Super serves as a high-end solution for enthusiast-grade gaming, specifically targeting those who want to push high settings at 1440p without the compromises found in lower-tier hardware. While the silicon possesses enough raw power to navigate titles at 4K, its primary strength lies in maintaining fluid motion and dense detail on ultra-wide or high-speed displays. This hardware effectively addresses the throughput limitations of earlier models by expanding the memory interface and widening the data paths, which keeps frametimes steady when the action on screen becomes intense.

A significant hardware shift here is the 16GB GDDR6X VRAM buffer, which removes the pressure of managing texture budgets in modern titles. With this capacity, you can dial up the visual fidelity in demanding games without the looming threat of asset pop-in or stuttering. Because the card uses a 256-bit bus width to move data, it avoids the local bottlenecks that often impact cards with smaller memory pools during high-fidelity asset loading. This architectural change provides a sturdy long-term foundation for upcoming software releases that demand more from a GPU's memory subsystem.

Ray tracing is a core strength of the Ada Lovelace architecture, and with 66 dedicated RT cores, this card handles complex light calculations and reflections with significant headroom. It manages the heavy computational load of path tracing by utilizing Frame Generation to sustain smooth visual delivery. Unlike hardware that struggles when ray-traced shadows are enabled, this card maintains a balance between high-end visual features and responsive input, ensuring that advanced lighting feels like a part of the experience rather than a burden on the system.

  • 1440p Performance: Effortless dominance. You can expect very high frame rates across the modern AAA catalog even when the settings are pushed to their limits.
  • 4K Performance: Capability with consideration. High-resolution gaming is possible, though you will likely want to utilize DLSS to keep the motion fluid in the most demanding titles.
  • Texture Quality: Broad flexibility. The 16GB memory pool ensures that high-resolution textures stay loaded and crisp even during long sessions in open-world environments.
  • Ray Tracing: Fully playable. The dedicated hardware allows you to keep advanced lighting and reflection effects active while still enjoying a sharp and responsive image.
Radeon RX 7700 XT
Gaming Analysis:

The Radeon RX 7700 XT occupies a mid-range space where it handles high-fidelity textures and complex geometry without much trouble. At its target 1440p resolution, this card maintains smooth motion in sprawling open-world maps and avoids the blurring or visual compromises common with entry-level hardware. While it stays fluid in standard rasterized workloads, pushing the resolution to 4K causes a visible drop in responsiveness that makes modern titles feel sluggish.

The 12GB VRAM buffer provides a comfortable ceiling for high-quality texture packs. Where cards with less video memory might struggle with asset-popping or micro-stuttering, the 7700 XT has enough breathing room to keep settings high. It does not offer the same total freedom as flagship hardware with massive pools of memory, but it removes the need to constantly monitor your settings just to keep the gameplay stable.

  • Standard Gaming Performance: This card is exceptionally fast at 1080p and stays very strong at 1440p. It provides a reliable experience in both fast-paced competitive shooters and cinematic RPGs that rely on raw shading power.
  • Ray Tracing: The 54 dedicated Ray Tracing units represent a step forward for the architecture, but heavy lighting effects still tax the silicon heavily. At 1440p, enabling complex reflections and shadows often leads to a significant loss in fluid motion.
  • Memory and Bus Width: The 192-bit bus and GDDR6 memory create a stable path for data. This helps the card maintain a steady pace even when a scene becomes crowded with particle effects or numerous on-screen characters.
  • Upscaling Technology: Because native performance can dip when heavy lighting features are active, using FSR helps maintain a playable pace. This allows you to keep some visual flourishes active without the gameplay becoming a choppy mess.

This hardware serves the gamer who wants 1440p clarity without the steep investment of an enthusiast-tier card. It handles raw geometry and standard lighting with ease, even if it lacks the specialized muscle required for native, heavy Ray Tracing at high resolutions. If you focus on standard settings, the 7700 XT feels fast, responsive, and reliable for modern gaming.

GeForce RTX 4070 Ti Super
Productivity Analysis:

While this hardware excels in high-refresh environments, it proves its worth when you transition from entertainment to professional production. Moving from 1440p gaming to a complex creative timeline often exposes where standard hardware begins to struggle, but the GeForce RTX 4070 Ti Super avoids typical bottlenecks by leveraging a 256-bit memory bus and a 16GB VRAM buffer. This configuration provides a stable foundation for projects that require significant memory headroom, such as high-resolution video editing or 3D scene assembly, where a lack of local memory can otherwise stall a workflow. It functions as a reliable workstation solution that offers flagship-level memory stability without the investment required for top-tier enthusiast cards.

The 16GB capacity serves as a critical threshold for creative software. In 3D rendering and video production, smaller memory pools often force the system to rely on slower system RAM, which can turn a brief export into a frustratingly long wait. With this much dedicated space, you can maintain a fluid multitasking environment where applications like Premiere Pro and Photoshop remain responsive even while a background render is active. This overhead ensures that large textures and complex geometric data stay on the card, preserving the speed of your interactions and eliminating the need to constantly monitor resource usage or close secondary tasks to free up space.

The Ada Lovelace architecture provides deep integration with professional software suites through the CUDA ecosystem, which remains a standard for reliability in rendering and AI tasks. Dual 8th Generation NVENC encoders allow for efficient video exports by effectively distributing the processing workload, which reduces the time spent waiting for a project to finish. These dedicated engines also handle the demands of high-quality broadcasting, ensuring that a live stream does not impact the responsiveness of the primary application. Furthermore, the 264 fourth-gen Tensor cores accelerate AI-driven features such as localized masking and upscaling, turning manual adjustments into near-instant results that respect your time.

  • Memory Throughput: The 672.3 GB/s bandwidth provides the necessary speed for scrubbing through complex 4K timelines without experiencing the lag or stuttering common on hardware with narrower data paths.
  • Software Compatibility: Professional drivers and extensive support from major creative developers ensure that the hardware remains stable and efficient throughout long production sessions.
  • AI Acceleration: Dedicated Tensor cores enable local execution of AI model inference and generative tools, providing professional-grade speeds for modern creative workflows.
  • Future-Proof Encoding: Hardware-level AV1 support offers a significant advantage for high-fidelity streaming and video archiving, delivering better visual quality at efficient bitrates.
  • System Power: To ensure a stable environment under full professional loads, a high-quality 750W power supply is recommended for this configuration.
Radeon RX 7700 XT
Productivity Analysis:

While this hardware is a strong contender for 1440p gaming, the Radeon RX 7700 XT moves into a different role when the software shifts to professional video editing and content creation. It occupies a pragmatic middle ground for creators who need a mix of raw throughput and stability without moving into the professional workstation price tiers. Because it offers high theoretical compute power, it handles standard rendering and timeline scrubbing with a level of speed that keeps the creative process moving. You will find that while it excels in general media tasks, some specialized 3D environments still favor different software optimizations.

The 12GB VRAM buffer serves as a reliable safety net for users moving beyond standard high-definition projects. This capacity is a noticeable step up for those who have previously hit the limits of 8GB cards when working with complex color grades or high-resolution overlays. This extra memory helps prevent the software from struggling during heavy exports or when managing multiple creative applications at the same time. While it does not provide the massive overhead required for elite-level architectural visualization, it offers the headroom necessary for a smooth freelance editing or graphic design workflow. You are essentially investing in the breathing room required to handle larger assets without constant system friction.

  • The 192-bit bus and 432 GB/s bandwidth ensure that moving through 4K footage feels snappy. This eliminates the sluggish response often felt when dragging a playhead across a dense timeline filled with effects.
  • For 3D artists, the 35.2 TFLOPS of standard compute power is quite high for this hardware tier. While software like Blender is seeing better support for the hardware through modern APIs, you may still find that certain specialized rendering plugins are more heavily optimized for competing architectures.
  • The inclusion of hardware AV1 encoding is a major benefit for anyone managing video archives or live broadcasts. This dedicated silicon takes the processing load off the CPU, which prevents the rest of your system from lagging while the video is being compressed or streamed.
  • AI-based tools in modern photo editing suites take advantage of the 70.3 TFLOPS of FP16 throughput. These calculations happen quickly enough that you can apply complex generative changes to a canvas without an intrusive wait for the progress bar to finish.

This hardware represents a specific value for the professional who prioritizes raw data throughput and video encoding capabilities. It functions as a workhorse that favors video-based tasks and high-resolution 2D design over the more specialized niches of 3D animation. You are choosing a card that offers more physical memory for its MSRP of $399, which provides a tangible benefit in memory-intensive applications. If your daily work involves heavy video timelines or large-scale digital painting, the 7700 XT is a reliable partner that stays efficient. It is a tool for the creator who knows where their specific hardware bottlenecks exist and wants to solve them with a healthy pool of video memory.

GeForce RTX 4070 Ti Super
Feature Analysis:

A 285W TDP means that managing heat and air volume inside your chassis is the primary physical constraint for this build. While the silicon is efficient for the performance it provides, that much power requires a case with high airflow and a power supply capable of absorbing sudden electrical transients. Although official specifications often suggest a 600W minimum, a 750W unit is the practical floor for maintaining long-term stability and protecting your components from the voltage spikes common in the Ada Lovelace architecture. Skimping on the power delivery here risks unexpected shutdowns or thermal throttling when the card is pushed during intense rendering or high-fidelity gaming sessions.

The card relies on a single 16-pin power connector, which introduces specific physical requirements for your internal cable management. These high-density cables are notoriously stiff and require a significant amount of straight clearance before they can be safely bent toward the power supply. If your chassis is narrow, you must ensure there is enough room between the GPU and the side panel to avoid putting lateral pressure on the connector, as a secure and flush seating is mandatory for a safe connection. By moving to the Super variant, you have also opted into a 256-bit memory bus that avoids the data bottlenecks found on cards with narrower interfaces, providing a much cleaner path for high-resolution assets and complex textures.

Choosing this hardware is effectively a decision to pay for the reliability and maturity of a well-established software ecosystem. You are gaining access to a suite of features that prioritize visual stability and consistent frame delivery over raw hardware specs alone. This build reality is less about searching for a bargain and more about securing a predictable experience where drivers and software integration just work. The 16GB VRAM buffer ensures that you have enough headroom to ignore texture settings menus for the foreseeable future, making the system feel reliable even as software demands continue to climb.

  • Power Delivery: A 750W power supply is recommended to provide the necessary electrical buffer for the transients and sustained loads this architecture demands.
  • Cable Management: The 16-pin power interface requires careful routing and sufficient clearance from the side panel to ensure a fully seated and secure connection.
  • Interface Bandwidth: Running on a full PCIe 4.0 x16 interface ensures that the GPU has unrestricted access to system resources without the compromises seen on lower-tier cards.
  • Thermal Design: The 285W heat output necessitates a case with a clear path for intake and exhaust to prevent hot air from recirculating and impacting other components.
  • Memory Headroom: The 16GB configuration provides a comfortable ceiling for 4K textures and high-resolution assets, reducing the likelihood of stuttering caused by memory overfilling.
Radeon RX 7700 XT
Feature Analysis:

A typical TDP of 245W means this hardware pulls enough power that you should prioritize a high-quality 650W power supply to ensure the system remains stable during heavy load. While the baseline requirements might suggest less, providing that extra room helps the unit manage the rapid transitions between low-stress menus and the intensive processing required for complex rendering. Relying on a weak or aging power source with this card can lead to unexpected shutdowns when the silicon hits its peak draw. By pairing it with a reliable power unit, you ensure the internal components receive a consistent flow of energy without straining the capacitors or triggering safety cut-offs.

The installation process is straightforward because the architecture utilizes two standard 8-pin power connectors rather than the newer, more rigid adapters found on some enthusiast cards. This choice makes cable management simpler and means you likely will not need to buy specialized hardware just to get the card seated and powered. Because it runs through a full PCIe 4.0 x16 interface, the card maintains its full communication speed even if you happen to be using an older motherboard that only supports the previous generation. This physical stability makes it a dependable choice for a wide variety of system configurations, provided you have the airflow to manage the thermal output.

  • The 12GB VRAM capacity offers a significant amount of headroom for high-resolution textures at 1440p without the stuttering often seen on cards with smaller memory pools.
  • With a 245W heat profile, this hardware performs best in a case with a mesh front and active intake fans to prevent warm air from pooling around the internal sensors.
  • Standard 8-pin connectors provide a familiar and secure physical connection that lacks the stiffness or clearance issues associated with newer power standards.
  • The full PCIe 4.0 x16 lanes ensure that data travels at its maximum possible rate between the processor and the graphics hardware without any artificial bandwidth limitations.
  • Managing the thermal output of the RDNA 3.0 architecture requires a case that can effectively cycle air, as keeping the card in a cramped or poorly ventilated space will eventually lead to higher fan noise.

This hardware acts as a durable workhorse for users who want modern features without the complications of specialized power adapters or extreme case requirements. It demands respect for its power consumption, but it rewards that attention with a stable and consistent experience across long periods of use. As long as the cooling environment is sufficient to move the heat away from the core, the card remains a quiet and effective part of the build. It represents a practical approach to modern graphics that focuses on physical compatibility and reliable data throughput across his class of hardware.

GeForce RTX 4070 Ti Super
Full Tech Specs:
Feature Specification
Name GeForce RTX 4070 Ti Super
MSRP $799
Release Date 2024-01-08
Chipset Manufacturer NVIDIA
Memory Size 16 GB
Memory Type GDDR6X
Memory Bus 256 bit
Memory Clock 1313 MHz
Memory Bandwidth 672.3 GB/s
Base Clock 2340 MHz
Boost Clock 2610 MHz
Shading Units 8448
Ray Tracing Cores 66
TMUs 264
ROPs 96
Pixel Rate 250.6 GPixel/s
Texture Rate 689 GTexel/s
Compute Power (FP16) 44.1 TFLOPS
Compute Power (FP32) 44.1 TFLOPS
Compute Power (FP64) 689.0 GFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 1x 16-pin
TDP 285 W
Suggested PSU (Minimum) 700 W
Radeon RX 7700 XT
Full Tech Specs:
Feature Specification
GPU Model Radeon RX 7700 XT
MSRP $399
Release Date 2023-08-25
Chipset Manufacturer AMD
Memory Size 12 GB
Memory Type GDDR6
Memory Bus 192 bit
Memory Clock 2250 MHz
Memory Bandwidth 432.0 GB/s
Base Clock 1435 MHz
Boost Clock 2544 MHz
Shading Units 3456
Ray Tracing Cores 54
TMUs 216
ROPs 96
Pixel Rate 244.2 GPixel/s
Texture Rate 549.5 GTexel/s
Compute Power (FP16) 70.3 TFLOPS
Compute Power (FP32) 35.2 TFLOPS
Compute Power (FP64) 1.1 TFLOPS
Architecture RDNA 3.0
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 2x 8-pin
TDP 245 W
Suggested PSU 650 W

Final Verdict

The GeForce RTX 4070 Ti Super is the superior choice for enthusiasts who want high-end performance and access to a massive suite of features. With 16GB of GDDR6X memory on a wide 256-bit bus, this card avoids the bottlenecks found in more modest hardware. It handles heavy textures and complex lighting with ease, especially when the dedicated hardware for ray tracing comes into play. While the Radeon RX 7700 XT is a solid performer for standard rendering, it lacks the raw power and specialized cores required to maintain high fidelity in the most demanding modern titles. The $799 MSRP for the NVIDIA card represents a premium investment, but it results in a much faster experience across both gaming and professional creative tasks.

Technical differences matter when you look at the architecture. The Ada Lovelace design provides massive improvements in efficiency and introduces tech like frame generation that keeps motion fluid during intensive scenes. In contrast, the Radeon RX 7700 XT at its $399 MSRP targets a different market entirely. It relies on a smaller 192-bit bus and 12GB of VRAM, which works for standard gaming but struggles as the resolution or quality settings increase. NVIDIA also holds a clear lead in productivity because of the CUDA ecosystem. If you do video editing or 3D rendering, the NVENC encoder and broad software support make the more expensive card a practical tool rather than just a luxury.

  • Gaming Stability: The additional VRAM on the NVIDIA card ensures long-term stability as new games demand more memory. The Radeon card is capable but finds its limit much sooner in modern workflows.
  • Feature Set: Access to DLSS keeps the GeForce RTX 4070 Ti Super relevant as games become more taxing. The AMD alternative uses FSR for upscaling, but the visual results and performance gains generally fall behind NVIDIA’s implementation.
  • Cooling and Power: The 4070 Ti Super requires more power but uses that energy to drive significantly higher shading units and compute power. It is a dense, powerful piece of hardware that fits into high-end builds perfectly.
  • Recommendation: Buy GeForce RTX 4070 Ti Super if you prioritize high-fidelity gaming with ray tracing, need ample VRAM for creative work, and can invest in premium hardware.
  • Recommendation: Buy Radeon RX 7700 XT if your budget is tight, you primarily game at 1080p or 1440p without ray tracing, and you accept lower future-proofing and feature support.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.