GeForce RTX 4080 Super vs GeForce RTX 5070

Winner:
GeForce RTX 5070
Main Difference:
Blackwell architecture with newer AI features at a significantly lower launch cost.
Page Summary:
GeForce RTX 5070 wins by offering the Blackwell architecture and superior efficiency for nearly half the price, delivering modern features that outweigh the raw memory and power advantages found in the older card.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 4080 Super

MSRP:
$999
See Current Price
Spec Sheet:
Core Count:
10240
Thread Count:
Base Clock:
2295 MHz
Boost Clock:
2550 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
320 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2024-01-08
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
83.2
83.5
1440p
74
68.8
4K
58.2
58.2
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

GeForce RTX 5070

MSRP:
$549
See Current Price
Spec Sheet:
Core Count:
6144
Thread Count:
Base Clock:
2325 MHz
Boost Clock:
2512 MHz
Integrated Graphics:
VRAM:
12.0 GB
L3 Cache:
12.0 GB
TDP:
250 W
Socket:
192 bit
Bus Width:
192 bit
Release Date:
2025-03-04
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
68.1
64
1440p
56.8
50
4K
45.1
41.6
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 4080 Super
Gaming Analysis:

The GeForce RTX 4080 Super functions as a high-tier powerhouse that handles the most demanding resolutions with steady performance. It thrives at 1440p where frame rates remain exceptionally fluid even when every visual setting is pushed to the limit. At 4K, it delivers a high-fidelity experience that remains quite competent, though the heaviest titles may require toggling upscaling features to maintain a smooth feel during intense action. It occupies a space where it easily clears the requirements for standard displays while offering a path to enthusiast-grade 4K gaming for those who understand how to balance their settings.

The 16GB VRAM buffer provides a significant ceiling for high-resolution textures, essentially removing the memory bottlenecks that can cause stuttering on lesser hardware. You can comfortably load massive texture packs in demanding games like Alan Wake 2 or The Last of Us Part 1 without seeing the blurry assets or hitched movement associated with memory overflow. This capacity gives the architecture plenty of breathing room to manage the large datasets required by modern engines, ensuring the visual experience stays sharp and stable over long sessions.

  • Ray Tracing Performance. This hardware utilizes 80 dedicated 3rd Gen RT cores to handle complex lighting and sharp reflections. Even in titles with heavy path tracing, it maintains a playable pace without the sluggish feel of older generations.
  • High Resolution Targets. At 1440p, this card offers total dominance for those using panels with high-refresh capabilities. The responsiveness remains consistent, which is helpful for fast-paced titles where input timing is everything.
  • 4K Capability. While powerful, the card is not entirely immune to the demands of the highest resolution. In extreme scenarios like Cyberpunk 2077 with maximum settings, leveraging DLSS becomes a practical way to keep the motion fluid.
  • Memory Architecture. The 256-bit bus and GDDR6X memory provide the necessary bandwidth to prevent data from getting choked, which helps maintain a consistent rhythm even when the scene complexity spikes.

Physically, this card requires a massive amount of space and a case with excellent thermal management. The large heatsink design is intended to move heat efficiently so fans do not have to roar at high speeds, but builders should verify clearance in compact cases before starting. To support the power requirements of the 2550 MHz boost clock and the rest of the system, an 800W power supply is the recommended baseline for a stable build. The performance is undeniable, positioning it as a premium option for enthusiasts who want flagship-level capabilities without moving to the very top of the stack.

GeForce RTX 5070
Gaming Analysis:

The GeForce RTX 5070 is a specialized 1440p tool that hits a distinct ceiling if you try to force high-resolution output without software assistance. While it handles 1440p with ease in heavy titles, it is not a brute-force monster. The raw performance shows a visible drop as resolution climbs, moving from a smooth experience at 1080p to a heavier feel at 4K. If you are gaming on a 1440p monitor, the motion feels fluid and responsive, but once you move to a 4K display, the hardware begins to struggle unless you lean on DLSS and frame generation technologies.

The 12GB of GDDR7 memory acts as a strict guardrail for your visual settings. It provides enough breathing room for standard 1440p textures, but the 192-bit bus cannot save you from physical capacity limits when settings are pushed to the max. Modern titles using advanced engines will eat through this buffer quickly. In demanding upcoming games, you will find yourself on a tight leash with texture sliders. Pushing settings to the highest levels while enabling heavy ray tracing effects will likely cause stuttering or visible asset popping as the card reaches its 12GB limit. It is a capable mid-range buffer, but it lacks the long-term security found in cards with higher VRAM capacities.

  • 1440p Performance: This is the sweet spot where the card maintains fluidity without significant compromises to visual fidelity.
  • 4K Reality: Using this card for native 4K often results in a sluggish experience, surviving primarily through the use of multi-frame generation and AI upscaling.
  • Ray Tracing: With 48 dedicated Blackwell RT cores, standard reflections look sharp, but the silicon feels the weight of full path tracing in heavy titles.
  • The Texture Tax: 12GB of VRAM is adequate for the short term, but high-resolution texture packs in future titles will push this card toward its absolute limit.
  • Software Dependency: Performance relies heavily on the Blackwell architecture features; without upscaling, the generational leap in raw power feels modest.

Ray tracing on this hardware is competent but requires respect for its limits. While the Blackwell 2.0 architecture handles complex lighting better than previous generations, the performance remains balanced rather than dominant. You can enable reflections and shadows while keeping the experience fluid. However, turning on extreme lighting modes or full path tracing will cause performance to plummet. At that point, the card relies on its optical flow hardware to synthesize motion, which can introduce a heavier feeling in control inputs despite the visual frame count appearing high. A 750W power supply is recommended to keep this system stable under these heavy gaming loads.

GeForce RTX 4080 Super
Productivity Analysis:

While the gaming capabilities of the GeForce RTX 4080 Super are well established, the shift to workstation tasks reveals a card that functions as a serious production tool for those managing demanding project loads. The 16GB of VRAM provides a generous buffer that helps prevent the slowdowns typically experienced on hardware with less memory, serving as a reliable ceiling for standard professional workflows. This capacity allows for the handling of complex 3D scenes and high-resolution video timelines without the constant threat of memory-related errors that disrupt the creative rhythm during tight deadlines.

The Ada Lovelace architecture brings specific advantages to the desk, notably through the inclusion of dual 8th Gen NVENC engines that enable faster video exports by splitting the encoding workload. In the professional world, the stability of the CUDA ecosystem remains a heavy influence, as many specialized plugins and software acceleration paths are built specifically to utilize this hardware. The card manages to keep the creative process feeling responsive even when scrubbing through large, high-bitrate footage files because the 256-bit memory bus provides a wide enough path to move data without causing a bottleneck in the system.

  • Memory Headroom. Having 16GB available means you can keep several resource-heavy applications open simultaneously without the system gasping for resources or forcing you to close your browser tabs just to maintain a stable render.
  • Accelerated Rendering. The 80 dedicated Ray Tracing cores handle the heavy mathematical lifting for light bounces and intersections in software like Blender, which significantly reduces the time spent waiting for a frame to resolve compared to using a processor alone.
  • Compute and AI Tasks. The 10240 CUDA cores and 4th Gen Tensor cores are utilized for modern software features like neural filters or AI-based noise reduction, processing these complex operations in a fraction of the time required by older hardware generations.
  • Power and Cooling Needs. This hardware is physically substantial and generates significant heat during long render sessions, requiring a high-quality 800W power supply and a case with enough internal volume to ensure the fans can move air effectively.

The memory bandwidth of 736.3 GB/s ensures that data flows into the cores at a pace that keeps the hardware active rather than waiting for assets to load. This consistency is what defines the experience for content creators who need to move massive texture sets or heavy geometry through their workspace without experiencing the stutters of a saturated bus. While it does not offer the same massive pool of memory found on the absolute flagship, this model hits a sweet spot for many freelancers who need a predictable workhorse that pays for its launch MSRP of $999 through saved time and improved reliability.

GeForce RTX 5070
Productivity Analysis:

While this card excels as a high-speed 1440p gaming tool, its transition to a professional workstation environment reveals a piece of hardware that functions like a surgical scalpel rather than a heavy tool for massive workloads. Production tasks that rely on accuracy and stability benefit from the Blackwell 2.0 architecture, but there is a mechanical limit when you push into high-resolution professional territory. You are choosing a refined ecosystem that prioritizes software polish over raw physical capacity. The 12GB of GDDR7 memory provides a comfortable middle ground for standard projects, keeping the system responsive when you have several creative applications open at the same time. If you try to scrub through a high-bitrate timeline loaded with complex effects, that 12GB buffer turns into a hard ceiling. You will likely see sluggish preview windows once the memory fills up because it lacks the long-term security found in cards with higher capacities. You must manage your texture pools and layer counts with a level of discipline that users working on massive projects might find restrictive.

The 192-bit bus combined with 672 GB/s of memory bandwidth makes navigating through asset-heavy scenes feel snappy. The inclusion of the NVENC encoder handles the heavy lifting of AV1 video exports, which allows you to manage high-bitrate streams without your CPU suffering a significant performance penalty. This is a clear efficiency win for single-pc setups where hardware must juggle multiple tasks at once. Stability remains a primary selling point for this hardware in a professional workspace. While other options might offer more raw memory for the money, you would lose the polished software support and specific acceleration that many professionals rely on to meet deadlines. The hardware is fast enough to handle freelance workloads at 1440p, but it remains a secondary choice for anyone building a dedicated 4K workstation or a heavy render node. To keep this system stable during long export sessions, a 700W power supply is recommended.

  • The 30.9 TFLOPS of FP16 and FP32 performance assists with AI-driven tools like generative fill or noise reduction, making these tasks feel nearly instantaneous on the specialized hardware.
  • Professional 3D rendering in applications like Blender sees a speed boost from the 48 dedicated ray tracing cores, though it stays within its mid-range tiering.
  • Support for 4:2:2 hardware decoding is a shift for video editors because it reduces the need to generate proxy files for footage from specific camera brands.
  • The 5th Gen Tensor cores allow enthusiasts to run language models with 8-bit quantization at usable speeds as long as the 12GB memory limit is respected.
  • A high-airflow case is helpful because the 250W power draw creates enough thermal density to heat up surrounding components during multi-hour render jobs.
GeForce RTX 4080 Super
Feature Analysis:

Managing the 320W thermal output of this hardware requires a build strategy focused on high-volume airflow and internal clearance to prevent heat from saturating surrounding components. While the 16.0 GB of VRAM provides a comfortable ceiling for high-resolution textures, the physical footprint and power demands of the Ada Lovelace architecture introduce specific logistical hurdles that builders must navigate to ensure long-term stability. It is not just about raw power but rather about providing the right environment for a high-tier piece of silicon that will be pushed to its limits during long gaming sessions or complex rendering tasks.

  • Power Supply Requirements. Although the base specification suggests a lower threshold, integrating an 800W power supply provides the necessary stability to handle the transient power spikes inherent to this level of enthusiast hardware.
  • Cable Management Dynamics. The single 16-pin power connector utilizes a design that can be relatively stiff, making it important to plan your cable routing carefully to avoid putting excessive stress on the GPU socket or the connector itself.
  • Case Airflow Pressure. With a typical TDP of 320W, the internal air temperature inside a cramped chassis will rise rapidly, meaning a case with a mesh front panel and multiple intake fans is practically a requirement for maintaining optimal clock speeds.
  • PCIe Slot Integrity. The PCIe 4.0 x16 interface ensures full bandwidth on modern motherboards, yet the sheer physical mass of the cooling solution often necessitates the use of a support bracket to prevent the PCB from sagging over time.
  • Ecosystem Reliability. Choosing this hardware is often a decision based on the reliability of the software drivers and the predictability of the CUDA platform, which remains the standard for users who cannot afford system crashes during a critical project.

The 256-bit memory bus and the high-speed GDDR6X memory modules generate their own heat localized near the core, which further underscores the need for a cooling solution that can move air across the entire surface of the board. This model represents a specific point of diminishing returns where the performance is high enough to handle almost anything thrown at it, yet it still requires a level of builder expertise to manage the physical and electrical demands. It is a substantial investment that pays off in a consistent experience for those who have the chassis space and the power overhead to support such a large and capable piece of hardware. Focusing on these build realities ensures that the GeForce RTX 4080 Super remains a silent and steady workhorse rather than a source of thermal noise or system instability in a poorly ventilated room.

GeForce RTX 5070
Feature Analysis:

A 250W typical power draw represents a substantial thermal shift for this class of hardware and requires a deliberate approach to case airflow. While the base specification suggests a 600W power supply, a 700W unit is the safer choice to handle the transient power spikes common in modern high-performance silicon. This card utilizes a single 16-pin power connector, which demands careful cable management to ensure the plug is fully seated and the wires are not under extreme tension near the socket. Given the heat density produced during long sessions, your chassis needs a consistent supply of fresh air to prevent the fans from ramping up to audible levels. This build reality means a cramped case with poor intake will likely result in higher internal temperatures for your other components.

The transition to the Blackwell 2.0 architecture brings the PCIe 5.0 x16 interface into the mid-range space, though it remains fully compatible with older PCIe 4.0 motherboards without a meaningful loss in bandwidth. You are essentially balancing a high-tech ecosystem against the physical constraints of a 192-bit memory bus. While the memory speed is high, the 12.0 GB capacity dictates how you handle visual settings in the coming years. It is a highly optimized tool for specific resolutions, provided you respect the limits of the physical memory pool. During assembly, the primarily hurdle is the 16-pin cable clearance, as these connectors require a straight path before any significant bends to maintain a reliable electrical connection.

  • Power Management: A 700W power supply provides the necessary stability to ensure the system does not shut down during sudden peaks in demand.
  • Thermal Density: The 250W TDP means the card exports significant heat into the case, making at least two front intake fans a requirement for stable operation.
  • Cable Safety: The 16-pin connection features recessed sensing pins designed to prevent power delivery if the cable is loose, so listen for a physical click during installation.
  • Memory Ceiling: The 12.0 GB of VRAM serves as a strict limit for high-resolution texture packs, which may lead to asset swapping if the buffer is overfilled.
  • System Interface: Support for PCIe 5.0 ensures the card is ready for the latest motherboard standards while maintaining efficiency on older platforms.

Memory capacity remains the most significant long-term factor to consider when planning your build around this hardware. While the current bandwidth is sufficient for fluid navigation in complex scenes, the 12.0 GB of GDDR7 acts as a firm guardrail that will eventually require you to lower texture quality in the most demanding future titles. This hardware is designed for a refined and efficient experience rather than brute-force longevity through massive memory pools. If you understand that you are buying into a specific performance tier that prioritizes modern architectural features over raw capacity, the hardware delivers a very consistent and predictable user experience. It functions best in a well-ventilated mid-tower where the power delivery and thermal output can be managed without compromising the lifespan of neighboring parts.

GeForce RTX 4080 Super
Full Tech Specs:
Feature Specification
Name GeForce RTX 4080 Super
MSRP $999
Release Date 2024-01-08
Chipset Manufacturer NVIDIA
Memory Size 16 GB
Memory Type GDDR6X
Memory Bus 256 bit
Memory Clock 1438 MHz
Memory Bandwidth 736.3 GB/s
Base Clock 2295 MHz
Boost Clock 2550 MHz
Shading Units 10240
Ray Tracing Cores 80
TMUs 320
ROPs 112
Pixel Rate 285.6 GPixel/s
Texture Rate 816 GTexel/s
Compute Power (FP16) 52.2 TFLOPS
Compute Power (FP32) 52.2 TFLOPS
Compute Power (FP64) 816.0 GFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 1x 16-pin
TDP 320 W
Suggested PSU 800 W
GeForce RTX 5070
Full Tech Specs:
Feature Specification
Name GeForce RTX 5070
MSRP $549
Release Date 2025-03-04
Chipset Manufacturer NVIDIA
Memory Size 12 GB
Memory Type GDDR7
Memory Bus 192 bit
Memory Clock 1750 MHz
Memory Bandwidth 672.0 GB/s
Base Clock 2325 MHz
Boost Clock 2512 MHz
Shading Units 6144
Ray Tracing Cores 48
TMUs 192
ROPs 80
Pixel Rate 201 GPixel/s
Texture Rate 482.3 GTexel/s
Compute Power (FP16) 30.9 TFLOPS
Compute Power (FP32) 30.9 TFLOPS
Compute Power (FP64) 482.3 GFLOPS
Architecture Blackwell 2.0
Process Size 5 nm
Interface PCIe 5.0 x16
Power Connectors 1x 16-pin
TDP 250 W
Suggested PSU 700 W

Final Verdict

The GeForce RTX 5070 represents a smarter path for builders prioritizing modern efficiency. It brings the Blackwell architecture to the table, which includes updated AI capabilities like the latest DLSS features that help bridge the gap in raw power. While the GeForce RTX 4080 Super launched with a higher Rasterization ceiling and 16GB of VRAM, its $999 MSRP makes it a difficult sell compared to the newer options. The GeForce RTX 5070 carries a much lean $549 MSRP, making the entry point for high-end builds far more accessible for the average person. The transition to GDDR7 memory on the newer card also helps maintain high bandwidth even with a narrower bus width, ensuring that data flows fast enough for smooth performance in modern titles.

For those focused on professional applications or extreme enthusiasts who refuse to compromise on memory capacity, the GeForce RTX 4080 Super still holds weight with its larger 16GB buffer. This extra space is helpful when loading massive textures or working in complex 3D scenes that might push smaller cards to their limits. However, the GeForce RTX 5070 counters with a more advanced media engine, offering better support for modern codecs like AV1. The power efficiency is also a major factor, as the Blackwell card requires a less demanding power supply, saving money on the total system build. When you look at the price-to-performance ratio, the newer card provides a level of accessibility that makes the older Ada Lovelace flagship feel like a specialized luxury rather than a standard requirement.

  • Gaming: The GeForce RTX 5070 uses frame generation and AI upscaling to push smooth visuals at high settings, while the GeForce RTX 4080 Super relies more on sheer hardware strength and a larger memory pool.
  • Productivity: GeForce RTX 4080 Super handles larger datasets due to its VRAM, but the GeForce RTX 5070 features a superior media engine for video work and uses newer PCIe 5.0 standards.
  • Value: With a $549 MSRP, the GeForce RTX 5070 is nearly half the cost of its rival, making it much easier to fit into a balanced budget.
  • Buy GeForce RTX 5070 if you want the best value for your money, access to the latest Blackwell AI features, and a more efficient power profile.
  • Buy GeForce RTX 4080 Super if you absolutely need 16GB of VRAM for heavy creative workloads and are willing to pay the massive premium for the older flagship hardware.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.