GeForce RTX 4080 Super vs Radeon RX 7800 XT

Winner:
GeForce RTX 4080 Super
Main Difference:
Superior ray tracing performance and DLSS support with higher memory bandwidth
Page Summary:
GeForce RTX 4080 Super wins by offering massive gains in ray tracing and professional software compatibility while maintaining better power efficiency through the Ada Lovelace architecture.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 4080 Super

MSRP:
$999
See Current Price
Spec Sheet:
Core Count:
10240
Thread Count:
Base Clock:
2295 MHz
Boost Clock:
2550 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
320 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2024-01-08
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
83.2
83.5
1440p
74
68.8
4K
58.2
58.2
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Radeon RX 7800 XT

MSRP:
$499
See Current Price
Spec Sheet:
Core Count:
3840
Thread Count:
Base Clock:
1295 MHz
Boost Clock:
2430 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
263 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2023-08-25
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
56.9
46
1440p
48.3
35.7
4K
38.4
30.2
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 4080 Super
Gaming Analysis:

The GeForce RTX 4080 Super functions as a high-tier powerhouse that handles the most demanding resolutions with steady performance. It thrives at 1440p where frame rates remain exceptionally fluid even when every visual setting is pushed to the limit. At 4K, it delivers a high-fidelity experience that remains quite competent, though the heaviest titles may require toggling upscaling features to maintain a smooth feel during intense action. It occupies a space where it easily clears the requirements for standard displays while offering a path to enthusiast-grade 4K gaming for those who understand how to balance their settings.

The 16GB VRAM buffer provides a significant ceiling for high-resolution textures, essentially removing the memory bottlenecks that can cause stuttering on lesser hardware. You can comfortably load massive texture packs in demanding games like Alan Wake 2 or The Last of Us Part 1 without seeing the blurry assets or hitched movement associated with memory overflow. This capacity gives the architecture plenty of breathing room to manage the large datasets required by modern engines, ensuring the visual experience stays sharp and stable over long sessions.

  • Ray Tracing Performance. This hardware utilizes 80 dedicated 3rd Gen RT cores to handle complex lighting and sharp reflections. Even in titles with heavy path tracing, it maintains a playable pace without the sluggish feel of older generations.
  • High Resolution Targets. At 1440p, this card offers total dominance for those using panels with high-refresh capabilities. The responsiveness remains consistent, which is helpful for fast-paced titles where input timing is everything.
  • 4K Capability. While powerful, the card is not entirely immune to the demands of the highest resolution. In extreme scenarios like Cyberpunk 2077 with maximum settings, leveraging DLSS becomes a practical way to keep the motion fluid.
  • Memory Architecture. The 256-bit bus and GDDR6X memory provide the necessary bandwidth to prevent data from getting choked, which helps maintain a consistent rhythm even when the scene complexity spikes.

Physically, this card requires a massive amount of space and a case with excellent thermal management. The large heatsink design is intended to move heat efficiently so fans do not have to roar at high speeds, but builders should verify clearance in compact cases before starting. To support the power requirements of the 2550 MHz boost clock and the rest of the system, an 800W power supply is the recommended baseline for a stable build. The performance is undeniable, positioning it as a premium option for enthusiasts who want flagship-level capabilities without moving to the very top of the stack.

Radeon RX 7800 XT
Gaming Analysis:

The Radeon RX 7800 XT functions as a high-tier option for enthusiasts focusing on 1440p performance. It relies on sheer bandwidth and a large memory pool to handle demanding textures, though you will likely see the hardware struggle at 4K unless you use upscaling to stabilize the experience. The performance profile favors traditional rendering where the card can push high frame rates with ease, but the experience becomes more of a struggle when you enable intensive ray-tracing effects that tax the RDNA 3.0 architecture.

  • The 16GB GDDR6 VRAM buffer is a significant advantage for long-term use. As modern titles demand more memory for high-resolution assets, this card provides enough overhead to keep texture settings high without the stuttering common on cards with smaller memory banks. It allows you to push the visual quality of world details without hitting a sudden wall that causes inconsistent frame delivery.
  • Rasterization is the clear strength of this card. At 1440p, it delivers fluid performance in competitive titles and heavy AAA releases alike, often showing a raw speed advantage over competitors like the RTX 4070. At lower resolutions, you might even find your processor becomes the bottleneck because the GPU handles standard rendering tasks so quickly.
  • Ray tracing remains a demanding task for this hardware. Even with 60 dedicated cores, heavy lighting implementations can cause a major drop in fluidity. For titles with complex path tracing or global illumination, you may need to keep these settings at more modest levels to maintain a smooth experience without the game becoming choppy.
  • Upscaling via FSR is an important tool if you want to attempt 4K gaming. Running at 4K native often results in lower responsiveness that is hard to ignore in fast-paced scenes. Using quality-focused upscaling modes helps maintain visual clarity while bringing the performance back into a playable range.
  • Power requirements are notable for this model. Considering the boost clock speeds and the architecture, a 750W power supply is recommended to handle the hardware during heavy gaming loads. The design focuses on raw memory bandwidth and traditional speed rather than maximum power efficiency, so expect the card to generate a fair amount of heat during long sessions.
GeForce RTX 4080 Super
Productivity Analysis:

While the gaming capabilities of the GeForce RTX 4080 Super are well established, the shift to workstation tasks reveals a card that functions as a serious production tool for those managing demanding project loads. The 16GB of VRAM provides a generous buffer that helps prevent the slowdowns typically experienced on hardware with less memory, serving as a reliable ceiling for standard professional workflows. This capacity allows for the handling of complex 3D scenes and high-resolution video timelines without the constant threat of memory-related errors that disrupt the creative rhythm during tight deadlines.

The Ada Lovelace architecture brings specific advantages to the desk, notably through the inclusion of dual 8th Gen NVENC engines that enable faster video exports by splitting the encoding workload. In the professional world, the stability of the CUDA ecosystem remains a heavy influence, as many specialized plugins and software acceleration paths are built specifically to utilize this hardware. The card manages to keep the creative process feeling responsive even when scrubbing through large, high-bitrate footage files because the 256-bit memory bus provides a wide enough path to move data without causing a bottleneck in the system.

  • Memory Headroom. Having 16GB available means you can keep several resource-heavy applications open simultaneously without the system gasping for resources or forcing you to close your browser tabs just to maintain a stable render.
  • Accelerated Rendering. The 80 dedicated Ray Tracing cores handle the heavy mathematical lifting for light bounces and intersections in software like Blender, which significantly reduces the time spent waiting for a frame to resolve compared to using a processor alone.
  • Compute and AI Tasks. The 10240 CUDA cores and 4th Gen Tensor cores are utilized for modern software features like neural filters or AI-based noise reduction, processing these complex operations in a fraction of the time required by older hardware generations.
  • Power and Cooling Needs. This hardware is physically substantial and generates significant heat during long render sessions, requiring a high-quality 800W power supply and a case with enough internal volume to ensure the fans can move air effectively.

The memory bandwidth of 736.3 GB/s ensures that data flows into the cores at a pace that keeps the hardware active rather than waiting for assets to load. This consistency is what defines the experience for content creators who need to move massive texture sets or heavy geometry through their workspace without experiencing the stutters of a saturated bus. While it does not offer the same massive pool of memory found on the absolute flagship, this model hits a sweet spot for many freelancers who need a predictable workhorse that pays for its launch MSRP of $999 through saved time and improved reliability.

Radeon RX 7800 XT
Productivity Analysis:

While the hardware is designed to excel in high-resolution gaming, the transition into a professional workstation environment reveals a card defined by raw memory capacity rather than specialized software optimization. You are looking at a component that trades the heavy industry polish of competing ecosystems for sheer silicon volume. If you intend to use this for creative work, the decision rests on whether the 16GB memory buffer outweighs the lack of specialized acceleration found in certain proprietary production pipelines. It serves as a heavy lifting tool for texture-heavy projects even as it finds less footing in certain specialized rendering tasks that rely on deep software integration or specific proprietary standards. Using this card for the right creative job makes it a functional workhorse, whereas forcing it into a workflow locked to specific third-party proprietary standards might leave you wishing for more specialized driver support.

  • The 16GB VRAM capacity acts as a significant buffer against memory limitations that can stall productivity on cards with smaller pools. While lower memory counts can create a hard wall for high-resolution video timelines or complex 3D scenes, this 256-bit bus allows you to load substantial assets without the system stuttering under the weight of the project. It provides a level of breathing room that allows for running multiple intensive creative applications simultaneously without hitting sudden performance drops when a project expands in complexity.
  • A memory bandwidth of over 620 GB/s ensures that data moves quickly enough to keep the user experience feeling responsive during active editing. You can feel this speed when scrubbing through a high-bitrate video timeline or manipulating large texture files because the hardware does not struggle to feed the processing cores during heavy data ingestion. This high-speed data highway provides a tactile precision that is often absent on cards with narrower buses which can feel sluggish when handled under heavy production loads.
  • The software ecosystem requires an understanding of the trade-offs involved when moving away from industry-standard proprietary rendering paths. In applications like Blender, the 60 ray tracing cores provide hardware-level acceleration, yet you may find that software specifically tuned for the competition still completes complex renders with more efficiency. You are essentially choosing a path of raw hardware value over the highly refined professional support and specialized stability offered by competing architectures that have dominated the professional space for years.
  • Local AI acceleration is handled through the FP16 compute performance which serves as the engine for modern tools like generative image generation or neural engine noise reduction. While the card does not utilize the same specialized tensor hardware as some competitors, it remains a capable local accelerator for many open-source models and creative suites. This provides enough power to experiment with and ship complex projects involving modern machine learning tools even if the card is not a dedicated enterprise AI solution.
  • The media engine includes hardware support for AV1 encoding which has become a vital standard for modern archival and high-quality video delivery. Creators can produce high-quality exports without the massive processing penalty that historically affected older architectures, keeping the rest of the system responsive while a video finishes in the background. A 750W power supply is recommended to maintain stability when the card is pushed to its limits during these long rendering or encoding sessions.
GeForce RTX 4080 Super
Feature Analysis:

Managing the 320W thermal output of this hardware requires a build strategy focused on high-volume airflow and internal clearance to prevent heat from saturating surrounding components. While the 16.0 GB of VRAM provides a comfortable ceiling for high-resolution textures, the physical footprint and power demands of the Ada Lovelace architecture introduce specific logistical hurdles that builders must navigate to ensure long-term stability. It is not just about raw power but rather about providing the right environment for a high-tier piece of silicon that will be pushed to its limits during long gaming sessions or complex rendering tasks.

  • Power Supply Requirements. Although the base specification suggests a lower threshold, integrating an 800W power supply provides the necessary stability to handle the transient power spikes inherent to this level of enthusiast hardware.
  • Cable Management Dynamics. The single 16-pin power connector utilizes a design that can be relatively stiff, making it important to plan your cable routing carefully to avoid putting excessive stress on the GPU socket or the connector itself.
  • Case Airflow Pressure. With a typical TDP of 320W, the internal air temperature inside a cramped chassis will rise rapidly, meaning a case with a mesh front panel and multiple intake fans is practically a requirement for maintaining optimal clock speeds.
  • PCIe Slot Integrity. The PCIe 4.0 x16 interface ensures full bandwidth on modern motherboards, yet the sheer physical mass of the cooling solution often necessitates the use of a support bracket to prevent the PCB from sagging over time.
  • Ecosystem Reliability. Choosing this hardware is often a decision based on the reliability of the software drivers and the predictability of the CUDA platform, which remains the standard for users who cannot afford system crashes during a critical project.

The 256-bit memory bus and the high-speed GDDR6X memory modules generate their own heat localized near the core, which further underscores the need for a cooling solution that can move air across the entire surface of the board. This model represents a specific point of diminishing returns where the performance is high enough to handle almost anything thrown at it, yet it still requires a level of builder expertise to manage the physical and electrical demands. It is a substantial investment that pays off in a consistent experience for those who have the chassis space and the power overhead to support such a large and capable piece of hardware. Focusing on these build realities ensures that the GeForce RTX 4080 Super remains a silent and steady workhorse rather than a source of thermal noise or system instability in a poorly ventilated room.

Radeon RX 7800 XT
Feature Analysis:

A typical 263 W power draw means this hardware generates substantial heat that your case fans must exhaust to prevent internal temperatures from climbing during long gaming sessions. Relying on two standard 8-pin PCIe cables, the card avoids the stiffness and cable management complexity often associated with newer 16-pin power standards found on high-end competitors. This physical layout makes the installation process significantly more intuitive for builders using older but reliable power supplies that lack specialized connectors. While the 600 W minimum specification is technically functional, moving to a 750W power supply provides the necessary electrical headroom to absorb the sudden power spikes that occur when the architecture transitions from idle to full load. This extra capacity ensures the system remains stable and prevents the sudden shutdowns that can happen when a power supply is pushed too close to its theoretical limit by a hungry GPU and a modern processor working in tandem.

  • The 16.0 GB VRAM buffer behaves like long-term insurance for your build because it prevents the stuttering and texture pop-in that can occur when 1440p assets exceed the capacity of smaller memory banks.
  • A PCIe 4.0 x16 interface ensures you are utilizing the full bandwidth available from your motherboard which is particularly helpful if you are installing this into a system with an older PCIe 3.0 slot.
  • The RDNA 3.0 architecture focuses on traditional rendering speed rather than proprietary software hacks, making it a straightforward choice for those who prefer consistent frames over experimental lighting features.
  • While the physical mounting is simple, the card occupies considerable space in the chassis and requires plenty of unobstructed airflow to maintain its boost clock speeds without the fans needing to spin at distracting volumes.
  • The launch MSRP of $499 established this card as a high-value contender for builders who prioritize raw memory capacity and 256-bit bus width over the specialized AI features found in other ecosystems.
GeForce RTX 4080 Super
Full Tech Specs:
Feature Specification
Name GeForce RTX 4080 Super
MSRP $999
Release Date 2024-01-08
Chipset Manufacturer NVIDIA
Memory Size 16 GB
Memory Type GDDR6X
Memory Bus 256 bit
Memory Clock 1438 MHz
Memory Bandwidth 736.3 GB/s
Base Clock 2295 MHz
Boost Clock 2550 MHz
Shading Units 10240
Ray Tracing Cores 80
TMUs 320
ROPs 112
Pixel Rate 285.6 GPixel/s
Texture Rate 816 GTexel/s
Compute Power (FP16) 52.2 TFLOPS
Compute Power (FP32) 52.2 TFLOPS
Compute Power (FP64) 816.0 GFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 1x 16-pin
TDP 320 W
Suggested PSU 800 W
Radeon RX 7800 XT
Full Tech Specs:
Feature Specification
Model Name Radeon RX 7800 XT
MSRP $499
Release Date 2023-08-25
Chipset Manufacturer AMD
Memory Size 16 GB
Memory Type GDDR6
Memory Bus 256 bit
Memory Clock 2438 MHz
Memory Bandwidth 624.1 GB/s
Base Clock 1295 MHz
Boost Clock 2430 MHz
Shading Units 3840
Ray Tracing Cores 60
TMUs 240
ROPs 96
Pixel Rate 233.3 GPixel/s
Texture Rate 583.2 GTexel/s
Compute Power (FP16) 74.7 TFLOPS
Compute Power (FP32) 37.3 TFLOPS
Compute Power (FP64) 1.2 TFLOPS
Architecture RDNA 3.0
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 2x 8-pin
TDP 263 W
Suggested PSU 700 W

Final Verdict

The GeForce RTX 4080 Super establishes itself as a vastly more capable piece of silicon for users who prioritize lighting accuracy and professional software stability. While the Radeon RX 7800 XT provides a solid experience for standard rasterized games, it simply cannot match the specialized hardware inside the NVIDIA card. The move to the Ada Lovelace architecture allows the 4080 Super to excel in complex lighting calculations. This card handles heavy ray-traced scenes with a level of fluidity that the RDNA 3 hardware struggles to replicate. The inclusion of GDDR6X memory push bandwidth significantly higher than its Peer. This speed is vital when loading high-resolution textures into its 16GB frame buffer. It makes a noticeable difference in production stability.

Software ecosystems play a massive role in this comparison. NVIDIA uses its proprietary CUDA cores to dominate fields like 3D rendering and video encoding. The dual NVENC engines allow for much faster export times in creative suites compared to the media engine found in the Radeon card. AMD relies on the ROCm framework which has improved but still lacks the universal developer support found in the green team camp. The 4080 Super also leverages DLSS 3.5 for high-quality upscaling and frame generation. These features provide a much cleaner image than what is typically seen with general upscaling techniques. The power delivery is also a factor. The 4080 Super requires a 16-pin connector but manages its power budget with impressive efficiency given the high shading unit count.

  • Ray Tracing Performance: Dedicated RT cores on the 4080 Super handle light bounce calculations much more effectively than the hardware on the Radeon card.
  • Memory Technology: The use of GDDR6X provides a clear speed advantage over standard GDDR6 modules.
  • Professional Integration: CUDA remains the industry standard for AI and rendering tasks.
  • Feature Set: Access to the full DLSS 3.5 suite provides better image reconstruction for demanding titles.

Buy GeForce RTX 4080 Super if you want the best possible ray tracing performance and require CUDA for professional rendering workloads at its $999 MSRP. Buy Radeon RX 7800 XT if you are a gamer focusing on standard lighting effects and want a capable 16GB card at its $499 MSRP launch price.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.