GeForce RTX 4080 Super vs Radeon RX 7900 XT

Winner:
GeForce RTX 4080 Super
Main Difference:
Hardware ray tracing acceleration and DLSS 3.5 versus larger 20GB VRAM capacity
Page Summary:
GeForce RTX 4080 Super is the superior choice for high-end enthusiasts because it offers advanced AI upscaling and better lighting effects despite the larger memory buffer found on the Radeon RX 7900 XT.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 4080 Super

MSRP:
$999
See Current Price
Spec Sheet:
Core Count:
10240
Thread Count:
Base Clock:
2295 MHz
Boost Clock:
2550 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
320 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2024-01-08
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
83.2
83.5
1440p
74
68.8
4K
58.2
58.2
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Radeon RX 7900 XT

MSRP:
$749
See Current Price
Spec Sheet:
Core Count:
5376
Thread Count:
Base Clock:
1387 MHz
Boost Clock:
2394 MHz
Integrated Graphics:
VRAM:
20.0 GB
L3 Cache:
20.0 GB
TDP:
300 W
Socket:
320 bit
Bus Width:
320 bit
Release Date:
2022-11-03
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
73.3
59.2
1440p
64.4
46.6
4K
52
38.4
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 4080 Super
Gaming Analysis:

The GeForce RTX 4080 Super functions as a high-tier powerhouse that handles the most demanding resolutions with steady performance. It thrives at 1440p where frame rates remain exceptionally fluid even when every visual setting is pushed to the limit. At 4K, it delivers a high-fidelity experience that remains quite competent, though the heaviest titles may require toggling upscaling features to maintain a smooth feel during intense action. It occupies a space where it easily clears the requirements for standard displays while offering a path to enthusiast-grade 4K gaming for those who understand how to balance their settings.

The 16GB VRAM buffer provides a significant ceiling for high-resolution textures, essentially removing the memory bottlenecks that can cause stuttering on lesser hardware. You can comfortably load massive texture packs in demanding games like Alan Wake 2 or The Last of Us Part 1 without seeing the blurry assets or hitched movement associated with memory overflow. This capacity gives the architecture plenty of breathing room to manage the large datasets required by modern engines, ensuring the visual experience stays sharp and stable over long sessions.

  • Ray Tracing Performance. This hardware utilizes 80 dedicated 3rd Gen RT cores to handle complex lighting and sharp reflections. Even in titles with heavy path tracing, it maintains a playable pace without the sluggish feel of older generations.
  • High Resolution Targets. At 1440p, this card offers total dominance for those using panels with high-refresh capabilities. The responsiveness remains consistent, which is helpful for fast-paced titles where input timing is everything.
  • 4K Capability. While powerful, the card is not entirely immune to the demands of the highest resolution. In extreme scenarios like Cyberpunk 2077 with maximum settings, leveraging DLSS becomes a practical way to keep the motion fluid.
  • Memory Architecture. The 256-bit bus and GDDR6X memory provide the necessary bandwidth to prevent data from getting choked, which helps maintain a consistent rhythm even when the scene complexity spikes.

Physically, this card requires a massive amount of space and a case with excellent thermal management. The large heatsink design is intended to move heat efficiently so fans do not have to roar at high speeds, but builders should verify clearance in compact cases before starting. To support the power requirements of the 2550 MHz boost clock and the rest of the system, an 800W power supply is the recommended baseline for a stable build. The performance is undeniable, positioning it as a premium option for enthusiasts who want flagship-level capabilities without moving to the very top of the stack.

Radeon RX 7900 XT
Gaming Analysis:

The Radeon RX 7900 XT acts as a high-tier powerhouse for high-resolution gaming, specifically excelling in scenarios where raw speed matters most. While it handles 4K gaming with relative ease, it finds its true stride on high-performance 1440p or ultrawide displays where frame delivery remains fluid and responsive. It often outpaces competitors in standard rasterization, providing a snappy experience in traditional shooters and action titles that rely on raw throughput rather than complex simulated lighting.

A major advantage of this card is the 20GB GDDR6 memory buffer. As modern titles demand more video memory for high-resolution assets, this generous capacity ensures you can maximize texture settings without encountering the stuttering or blurry asset loads common on hardware with less overhead. This large pool of VRAM serves as a buffer against unoptimized releases and massive high-definition texture packs, allowing for a consistent experience without the need to constantly adjust settings to stay within memory limits.

Ray tracing performance requires a more tempered perspective because the hardware, while capable, faces a significant tax when calculating advanced path-traced lighting or complex reflections. In visually demanding titles, enabling these effects can cause a noticeable drop in fluidity compared to pure rasterization. If your priority is seeing every light bounce and sharp shadow at native resolutions, you might find the trade-off in speed too steep. This card is built as a rasterization specialist that favors high frame delivery over cinematic lighting heavy-lifting.

  • Performance at 1440p is consistently sharp, providing the headroom needed for fast-paced competitive play.
  • The 320-bit bus allows for rapid data transfer, which helps maintain stable frame times during visually intense moments.
  • The RDNA 3.0 architecture supports FSR 3 to provide a helpful boost in demanding games when extra fluidity is required.
  • A high-quality 850W power supply is recommended to handle the power demands of this card during peak gaming loads.
GeForce RTX 4080 Super
Productivity Analysis:

While the gaming capabilities of the GeForce RTX 4080 Super are well established, the shift to workstation tasks reveals a card that functions as a serious production tool for those managing demanding project loads. The 16GB of VRAM provides a generous buffer that helps prevent the slowdowns typically experienced on hardware with less memory, serving as a reliable ceiling for standard professional workflows. This capacity allows for the handling of complex 3D scenes and high-resolution video timelines without the constant threat of memory-related errors that disrupt the creative rhythm during tight deadlines.

The Ada Lovelace architecture brings specific advantages to the desk, notably through the inclusion of dual 8th Gen NVENC engines that enable faster video exports by splitting the encoding workload. In the professional world, the stability of the CUDA ecosystem remains a heavy influence, as many specialized plugins and software acceleration paths are built specifically to utilize this hardware. The card manages to keep the creative process feeling responsive even when scrubbing through large, high-bitrate footage files because the 256-bit memory bus provides a wide enough path to move data without causing a bottleneck in the system.

  • Memory Headroom. Having 16GB available means you can keep several resource-heavy applications open simultaneously without the system gasping for resources or forcing you to close your browser tabs just to maintain a stable render.
  • Accelerated Rendering. The 80 dedicated Ray Tracing cores handle the heavy mathematical lifting for light bounces and intersections in software like Blender, which significantly reduces the time spent waiting for a frame to resolve compared to using a processor alone.
  • Compute and AI Tasks. The 10240 CUDA cores and 4th Gen Tensor cores are utilized for modern software features like neural filters or AI-based noise reduction, processing these complex operations in a fraction of the time required by older hardware generations.
  • Power and Cooling Needs. This hardware is physically substantial and generates significant heat during long render sessions, requiring a high-quality 800W power supply and a case with enough internal volume to ensure the fans can move air effectively.

The memory bandwidth of 736.3 GB/s ensures that data flows into the cores at a pace that keeps the hardware active rather than waiting for assets to load. This consistency is what defines the experience for content creators who need to move massive texture sets or heavy geometry through their workspace without experiencing the stutters of a saturated bus. While it does not offer the same massive pool of memory found on the absolute flagship, this model hits a sweet spot for many freelancers who need a predictable workhorse that pays for its launch MSRP of $999 through saved time and improved reliability.

Radeon RX 7900 XT
Productivity Analysis:

While the hardware is tuned for high frame rates in entertainment, moving into a professional project requires a shift in how you view these specifications. In a production environment, success is measured by whether you can finish a render without hitting a memory ceiling or if the viewport remains responsive while working with dense geometry. The Radeon RX 7900 XT provides a massive 20GB buffer that serves as a safety net for anyone working with 4K video or complex 3D environments that would overwhelm hardware with less capacity. This large pool of video memory determines if you can actually load a massive scene or if you will be forced to spend your time optimizing textures just to keep the software from stalling.

Most mid-range options are capped at lower memory limits which creates a physical wall for editors working on high-bitrate timelines or creators using multiple layers of color grading. This card allows you to keep several demanding applications open simultaneously without the hardware struggling during the data swap. The 320-bit bus acts as a wide path that keeps large files moving quickly, which makes scrubbing through footage feel snappy rather than experiencing the lagging sensation common on more restricted silicon. It provides a level of headroom that prevents the system from gasping when a project grows in complexity or resolution.

  • The 20GB of VRAM allows for loading massive texture sets in 3D applications that would fail on a standard 8GB or 12GB card.
  • With theoretical compute performance reaching 51.5 TFLOPS, the raw math capabilities are ready for heavy lifting in OpenCL or heavy rendering tasks.
  • Integration of an AV1 encoder helps video editors and broadcasters achieve modern compression standards without putting additional strain on the processor.
  • The high memory bandwidth of 800.0 GB/s ensures that data transitions between the GPU and system memory remain fluid during heavy asset loading.
  • Support for the RDNA 3.0 architecture provides a modern foundation for professional software that utilizes hardware-accelerated rendering.

You should consider the specific software ecosystem when choosing this hardware over competing options. While the card is a powerhouse for standard compute tasks, some specialized rendering engines are deeply optimized for different proprietary platforms. In applications like Blender, the 84 ray tracing cores provide significant assistance, but the software path might not be as lean as it is on alternative architectures. If your professional work relies on specific ray-traced plugins, you have to decide if the generous memory capacity outweighs the potential for longer render times compared to more expensive alternatives that might lack this much VRAM.

Stability under professional load is a primary concern for any independent creator who cannot afford a hardware failure in the middle of a deadline. While many initial driver issues have been addressed through updates, the platform sometimes requires a small amount of manual adjustment to ensure perfectly consistent behavior throughout a long work week. It is a high-value tool for those who understand their software requirements and need the massive memory buffer to handle ambitious projects, though it may require more attention than a strictly plug-and-play solution. If you need a workstation that prioritizes raw data capacity and high-resolution video handling, this card offers a distinct advantage in its class.

GeForce RTX 4080 Super
Feature Analysis:

Managing the 320W thermal output of this hardware requires a build strategy focused on high-volume airflow and internal clearance to prevent heat from saturating surrounding components. While the 16.0 GB of VRAM provides a comfortable ceiling for high-resolution textures, the physical footprint and power demands of the Ada Lovelace architecture introduce specific logistical hurdles that builders must navigate to ensure long-term stability. It is not just about raw power but rather about providing the right environment for a high-tier piece of silicon that will be pushed to its limits during long gaming sessions or complex rendering tasks.

  • Power Supply Requirements. Although the base specification suggests a lower threshold, integrating an 800W power supply provides the necessary stability to handle the transient power spikes inherent to this level of enthusiast hardware.
  • Cable Management Dynamics. The single 16-pin power connector utilizes a design that can be relatively stiff, making it important to plan your cable routing carefully to avoid putting excessive stress on the GPU socket or the connector itself.
  • Case Airflow Pressure. With a typical TDP of 320W, the internal air temperature inside a cramped chassis will rise rapidly, meaning a case with a mesh front panel and multiple intake fans is practically a requirement for maintaining optimal clock speeds.
  • PCIe Slot Integrity. The PCIe 4.0 x16 interface ensures full bandwidth on modern motherboards, yet the sheer physical mass of the cooling solution often necessitates the use of a support bracket to prevent the PCB from sagging over time.
  • Ecosystem Reliability. Choosing this hardware is often a decision based on the reliability of the software drivers and the predictability of the CUDA platform, which remains the standard for users who cannot afford system crashes during a critical project.

The 256-bit memory bus and the high-speed GDDR6X memory modules generate their own heat localized near the core, which further underscores the need for a cooling solution that can move air across the entire surface of the board. This model represents a specific point of diminishing returns where the performance is high enough to handle almost anything thrown at it, yet it still requires a level of builder expertise to manage the physical and electrical demands. It is a substantial investment that pays off in a consistent experience for those who have the chassis space and the power overhead to support such a large and capable piece of hardware. Focusing on these build realities ensures that the GeForce RTX 4080 Super remains a silent and steady workhorse rather than a source of thermal noise or system instability in a poorly ventilated room.

Radeon RX 7900 XT
Feature Analysis:

Managing the 300W thermal output of the Radeon RX 7900 XT requires a case with high-volume airflow to prevent heat soak during extended sessions. This hardware pulls significant power and relies on two standard 8-pin PCIe cables, which simplifies the build process since you do not have to worry about the stiffness or clearance issues associated with newer 16-pin adapters. While the launch documentation suggests a smaller power supply might work, pairing this card with an 800W unit is the smarter move for long-term stability. This extra margin accounts for the brief power spikes that often occur when game engines transition between demanding scenes, helping you avoid the random system restarts that can plague builds using bare-minimum power overhead.

The physical footprint of this card is substantial, and its weight can place significant stress on the PCIe 4.0 x16 slot over time. Because the PCB is heavy, using a support bracket is a practical necessity to prevent the board from sagging or warping. Beyond the physical installation, the modern RDNA 3.0 architecture provides a sturdy foundation for high-resolution setups, though the user experience sometimes requires a more hands-on approach. You might find yourself occasionally adjusting software settings or updating drivers to maintain perfect consistency, but the trade-off is access to top-tier hardware that avoids many of the proprietary connector headaches found on competing flagships.

  • The 20GB VRAM pool offers a massive amount of headroom for 4K textures, ensuring the card remains relevant as software demands continue to climb.
  • Using two dedicated 8-pin power cables instead of a daisy-chained single cable ensures cleaner power delivery and reduces the risk of triggering safety shut-offs.
  • The PCIe 4.0 x16 interface provides the full data bandwidth necessary for modern motherboards to communicate with the GPU without any artificial bottlenecks.
  • A launch MSRP of $749 positions this card as a high-value alternative for builders who prioritize raw hardware specifications over software ecosystem polish.
  • The traditional power connector design means you can use your existing power supply cables without needing to purchase specialized ATX 3.0 hardware or vertical mounting kits.

Refining the system behavior often involves a few minutes in the BIOS or driver software to ensure features like Resize Bar are functioning correctly. It is a build choice that favors the enthusiast who enjoys fine-tuning their machine to get the most out of the silicon. While it may lack the immediate plug-and-play refinement of some alternatives, the combination of a wide memory bus and massive VRAM capacity makes it a durable choice. If you prefer a build that focuses on high-capacity memory and standard physical compatibility, this card delivers the necessary tools for a high-performance workstation or gaming rig that will last through several upgrade cycles.

GeForce RTX 4080 Super
Full Tech Specs:
Feature Specification
Name GeForce RTX 4080 Super
MSRP $999
Release Date 2024-01-08
Chipset Manufacturer NVIDIA
Memory Size 16 GB
Memory Type GDDR6X
Memory Bus 256 bit
Memory Clock 1438 MHz
Memory Bandwidth 736.3 GB/s
Base Clock 2295 MHz
Boost Clock 2550 MHz
Shading Units 10240
Ray Tracing Cores 80
TMUs 320
ROPs 112
Pixel Rate 285.6 GPixel/s
Texture Rate 816 GTexel/s
Compute Power (FP16) 52.2 TFLOPS
Compute Power (FP32) 52.2 TFLOPS
Compute Power (FP64) 816.0 GFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 1x 16-pin
TDP 320 W
Suggested PSU 800 W
Radeon RX 7900 XT
Full Tech Specs:
Feature Specification
Name Radeon RX 7900 XT
MSRP $749
Release Date 2022-11-03
Chipset Manufacturer AMD
Memory Size 20 GB
Memory Type GDDR6
Memory Bus 320 bit
Memory Clock 2500 MHz
Memory Bandwidth 800.0 GB/s
Base Clock 1387 MHz
Boost Clock 2394 MHz
Shading Units 5376
Ray Tracing Cores 84
TMUs 336
ROPs 192
Pixel Rate 459.6 GPixel/s
Texture Rate 804.4 GTexel/s
Compute Power (FP16) 103.0 TFLOPS
Compute Power (FP32) 51.5 TFLOPS
Compute Power (FP64) 1.6 TFLOPS
Architecture RDNA 3.0
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 2x 8-pin
TDP 300 W
Suggested PSU 800 W

Final Verdict

The GeForce RTX 4080 Super is the superior choice for most high-end builds. It delivers exceptional lighting effects through dedicated hardware and utilizes the DLSS 3.5 suite to maintain fluidity in the most demanding environments. While the Radeon RX 7900 XT launched at a $749 MSRP and provides a larger 20GB memory pool, its lighting performance often results in stability issues during heavy rendering tasks. NVIDIA instead relies on the power efficiency of the Ada Lovelace architecture to provide a more refined experience even with a lower total VRAM count. The addition of technologies like Reflex and Broadcast further cements the lead for users who stream or play competitive titles where latency is a critical factor.

  • Gaming Performance: The GeForce RTX 4080 Super thrives when pushed with advanced paths and complex lighting. The Radeon RX 7900 XT remains strong in standard rasterization but the lack of an equivalent to Frame Generation in certain titles often leads to noticeable performance drops when the visual settings are cranked to the absolute maximum.
  • Productivity: Professional software often favors the CUDA ecosystem found in the GeForce RTX 4080 Super. Although the Radeon RX 7900 XT has a wider memory bus and more raw VRAM, it frequently encounters software integration hurdles in creative suites like Blender.
  • Value: Considering the $999 MSRP of the NVIDIA card, it represents a significant investment over the Radeon RX 7900 XT. However, the superior feature set and more reliable driver environment justify the premium for anyone building a flagship machine.

Buy GeForce RTX 4080 Super if you prioritize ray tracing, DLSS 3.5, and stable professional software support. Buy Radeon RX 7900 XT if you need a large 20GB memory buffer for specific textures and prefer a lower launch MSRP for traditional gaming.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.