GeForce RTX 4080 Super vs Radeon RX 7900 XTX

Winner:
GeForce RTX 4080 Super
Main Difference:
Ray tracing performance and software features versus massive memory capacity.
Page Summary:
GeForce RTX 4080 Super wins by pairing superior ray tracing capabilities and a more advanced feature set with better efficiency, despite having less memory than its competitor.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 4080 Super

MSRP:
$999
See Current Price
Spec Sheet:
Core Count:
10240
Thread Count:
Base Clock:
2295 MHz
Boost Clock:
2550 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
320 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2024-01-08
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
83.2
83.5
1440p
74
68.8
4K
58.2
58.2
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Radeon RX 7900 XTX

MSRP:
$999
See Current Price
Spec Sheet:
Core Count:
6144
Thread Count:
Base Clock:
1929 MHz
Boost Clock:
2498 MHz
Integrated Graphics:
VRAM:
24.0 GB
L3 Cache:
24.0 GB
TDP:
355 W
Socket:
384 bit
Bus Width:
384 bit
Release Date:
2022-11-03
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
79.4
66.4
1440p
71.8
54
4K
60.8
44.9
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 4080 Super
Gaming Analysis:

The GeForce RTX 4080 Super functions as a high-tier powerhouse that handles the most demanding resolutions with steady performance. It thrives at 1440p where frame rates remain exceptionally fluid even when every visual setting is pushed to the limit. At 4K, it delivers a high-fidelity experience that remains quite competent, though the heaviest titles may require toggling upscaling features to maintain a smooth feel during intense action. It occupies a space where it easily clears the requirements for standard displays while offering a path to enthusiast-grade 4K gaming for those who understand how to balance their settings.

The 16GB VRAM buffer provides a significant ceiling for high-resolution textures, essentially removing the memory bottlenecks that can cause stuttering on lesser hardware. You can comfortably load massive texture packs in demanding games like Alan Wake 2 or The Last of Us Part 1 without seeing the blurry assets or hitched movement associated with memory overflow. This capacity gives the architecture plenty of breathing room to manage the large datasets required by modern engines, ensuring the visual experience stays sharp and stable over long sessions.

  • Ray Tracing Performance. This hardware utilizes 80 dedicated 3rd Gen RT cores to handle complex lighting and sharp reflections. Even in titles with heavy path tracing, it maintains a playable pace without the sluggish feel of older generations.
  • High Resolution Targets. At 1440p, this card offers total dominance for those using panels with high-refresh capabilities. The responsiveness remains consistent, which is helpful for fast-paced titles where input timing is everything.
  • 4K Capability. While powerful, the card is not entirely immune to the demands of the highest resolution. In extreme scenarios like Cyberpunk 2077 with maximum settings, leveraging DLSS becomes a practical way to keep the motion fluid.
  • Memory Architecture. The 256-bit bus and GDDR6X memory provide the necessary bandwidth to prevent data from getting choked, which helps maintain a consistent rhythm even when the scene complexity spikes.

Physically, this card requires a massive amount of space and a case with excellent thermal management. The large heatsink design is intended to move heat efficiently so fans do not have to roar at high speeds, but builders should verify clearance in compact cases before starting. To support the power requirements of the 2550 MHz boost clock and the rest of the system, an 800W power supply is the recommended baseline for a stable build. The performance is undeniable, positioning it as a premium option for enthusiasts who want flagship-level capabilities without moving to the very top of the stack.

Radeon RX 7900 XTX
Gaming Analysis:

The Radeon RX 7900 XTX is a specialized 4K powerhouse built for those who value aggressive raw speed over synthetic lighting tricks. It occupies a rare space where it can trade blows with elite cards in standard tasks, though it faces a significant performance drop once heavy ray tracing is enabled. This card is built for enthusiasts who demand fluid performance at high resolutions and refuse to compromise on texture quality in traditional titles.

The standout hardware choice here is the 24GB of GDDR6 memory on a wide 384-bit bus. While other hardware designs might limit memory capacity, this card provides enough room to crank every texture slider to the maximum and leave them there. You are unlikely to encounter the stuttering or blurred textures that can affect cards with smaller buffers in modern titles. It helps protect your experience against massive texture loads, allowing for high-resolution asset packs and mods without the system struggling because the memory buffer is full.

  • 1080p Performance: High-tier overkill. Your processor will likely become the limiting factor before this card reaches its limit, resulting in exceptionally smooth and responsive motion.
  • 1440p Performance: A natural fit. It handles this resolution with ease, providing the headroom needed for monitors with very high refresh capabilities.
  • 4K Performance: Native 4K is very much the target, maintaining a crisp and playable flow in demanding titles without a forced reliance on upscaling.

However, users should be aware of the trade-offs regarding ray tracing. While the 96 Ray Accelerators can manage lighting effects, the performance hit is substantial. Enabling heavy path tracing in modern titles can lead to an inconsistent experience that lacks the fluidity found in standard rasterization. If you prioritize realistic reflections and complex global illumination, you may find that it trails its primary rivals in these specific lighting tasks.

Physical integration requires a high-quality power supply and a large case. Based on its power draw and RDNA 3.0 architecture, a 850W power supply is recommended to handle transient spikes during intense gaming sessions. You will notice significant heat displacement from the back of your chassis. If your case has restricted airflow, the fans will ramp up as the cooling system works to manage the thermal output of this flagship-tier hardware. It is a power-hungry component that thrives in a chassis with active, high-volume ventilation.

GeForce RTX 4080 Super
Productivity Analysis:

While the gaming capabilities of the GeForce RTX 4080 Super are well established, the shift to workstation tasks reveals a card that functions as a serious production tool for those managing demanding project loads. The 16GB of VRAM provides a generous buffer that helps prevent the slowdowns typically experienced on hardware with less memory, serving as a reliable ceiling for standard professional workflows. This capacity allows for the handling of complex 3D scenes and high-resolution video timelines without the constant threat of memory-related errors that disrupt the creative rhythm during tight deadlines.

The Ada Lovelace architecture brings specific advantages to the desk, notably through the inclusion of dual 8th Gen NVENC engines that enable faster video exports by splitting the encoding workload. In the professional world, the stability of the CUDA ecosystem remains a heavy influence, as many specialized plugins and software acceleration paths are built specifically to utilize this hardware. The card manages to keep the creative process feeling responsive even when scrubbing through large, high-bitrate footage files because the 256-bit memory bus provides a wide enough path to move data without causing a bottleneck in the system.

  • Memory Headroom. Having 16GB available means you can keep several resource-heavy applications open simultaneously without the system gasping for resources or forcing you to close your browser tabs just to maintain a stable render.
  • Accelerated Rendering. The 80 dedicated Ray Tracing cores handle the heavy mathematical lifting for light bounces and intersections in software like Blender, which significantly reduces the time spent waiting for a frame to resolve compared to using a processor alone.
  • Compute and AI Tasks. The 10240 CUDA cores and 4th Gen Tensor cores are utilized for modern software features like neural filters or AI-based noise reduction, processing these complex operations in a fraction of the time required by older hardware generations.
  • Power and Cooling Needs. This hardware is physically substantial and generates significant heat during long render sessions, requiring a high-quality 800W power supply and a case with enough internal volume to ensure the fans can move air effectively.

The memory bandwidth of 736.3 GB/s ensures that data flows into the cores at a pace that keeps the hardware active rather than waiting for assets to load. This consistency is what defines the experience for content creators who need to move massive texture sets or heavy geometry through their workspace without experiencing the stutters of a saturated bus. While it does not offer the same massive pool of memory found on the absolute flagship, this model hits a sweet spot for many freelancers who need a predictable workhorse that pays for its launch MSRP of $999 through saved time and improved reliability.

Radeon RX 7900 XTX
Productivity Analysis:

While this card excels at pushing high frame rates, the transition to professional workloads introduces a different set of priorities centered on hardware volume. The primary advantage here is the massive 24GB of memory on a 384-bit bus, which provides a level of headroom usually reserved for much more expensive workstation hardware. This buffer is a hard ceiling for many creative tasks, and having this much room makes the difference between a project that finished overnight and one that stopped because the system ran out of room for high-resolution textures or complex geometry. It is a brute-force approach to data that handles massive architectural models or heavy video timelines without the friction of a limited memory pool.

The 960 GB/s bandwidth ensures that data moves with enough velocity to keep playback fluid when scrubbing through large files. Rather than relying on software tricks, the hardware simply has the physical width to handle the load. This makes it a reliable choice for builders who need massive capacity for local machine learning models or 4K video projects but do not want to pay for a dedicated professional-tier card. You are essentially buying a large, fast bucket for your assets, though you must be aware that the software ecosystem sometimes favors other architectures for specific rendering tasks.

  • Video Editing: Dual media engines handle high-resolution exports with significant speed, though specific hardware decoding for some professional camera formats may vary compared to competitors.
  • 3D Modeling: Viewport movement remains smooth even in scenes with high polygon counts, allowing for complex scene navigation provided the work relies on rasterization rather than heavy ray tracing.
  • AI Training: High FP16 performance and the massive 24GB buffer make it a standout for running large local language models or image generation tasks that would fail on cards with less memory.
  • Rendering: Speed remains high in open-source suites like Blender, but the lack of proprietary rendering APIs means you may see longer wait times in path-traced scenes compared to hardware with more specialized software support.

You must consider the trade-off between raw hardware power and industry-standard software integration. Many creative applications are optimized for the CUDA standard, and while this card is incredibly powerful, you may find yourself using translation layers in certain professional suites. If your workflow involves engines like Octane or Redshift that are locked to specific platforms, this card will not be the right tool for the job regardless of its speed. It is a choice for the professional who knows their software supports the HIP API or OpenCL and wants the best possible memory capacity for the money.

Managing this much power requires attention to the rest of your build. Under a sustained render or export, the card has a high power draw that puts a significant load on your thermal solution. An 850W power supply is necessary to ensure the system remains stable during long sessions where the hardware is pushed to its limit. If you are working in a smaller chassis with poor ventilation, the fans will become quite audible as they struggle to move the heat generated by the RDNA 3.0 architecture. It is a loud and powerful component that demands a case with high-volume airflow to maintain stable clock speeds throughout your workday.

GeForce RTX 4080 Super
Feature Analysis:

Managing the 320W thermal output of this hardware requires a build strategy focused on high-volume airflow and internal clearance to prevent heat from saturating surrounding components. While the 16.0 GB of VRAM provides a comfortable ceiling for high-resolution textures, the physical footprint and power demands of the Ada Lovelace architecture introduce specific logistical hurdles that builders must navigate to ensure long-term stability. It is not just about raw power but rather about providing the right environment for a high-tier piece of silicon that will be pushed to its limits during long gaming sessions or complex rendering tasks.

  • Power Supply Requirements. Although the base specification suggests a lower threshold, integrating an 800W power supply provides the necessary stability to handle the transient power spikes inherent to this level of enthusiast hardware.
  • Cable Management Dynamics. The single 16-pin power connector utilizes a design that can be relatively stiff, making it important to plan your cable routing carefully to avoid putting excessive stress on the GPU socket or the connector itself.
  • Case Airflow Pressure. With a typical TDP of 320W, the internal air temperature inside a cramped chassis will rise rapidly, meaning a case with a mesh front panel and multiple intake fans is practically a requirement for maintaining optimal clock speeds.
  • PCIe Slot Integrity. The PCIe 4.0 x16 interface ensures full bandwidth on modern motherboards, yet the sheer physical mass of the cooling solution often necessitates the use of a support bracket to prevent the PCB from sagging over time.
  • Ecosystem Reliability. Choosing this hardware is often a decision based on the reliability of the software drivers and the predictability of the CUDA platform, which remains the standard for users who cannot afford system crashes during a critical project.

The 256-bit memory bus and the high-speed GDDR6X memory modules generate their own heat localized near the core, which further underscores the need for a cooling solution that can move air across the entire surface of the board. This model represents a specific point of diminishing returns where the performance is high enough to handle almost anything thrown at it, yet it still requires a level of builder expertise to manage the physical and electrical demands. It is a substantial investment that pays off in a consistent experience for those who have the chassis space and the power overhead to support such a large and capable piece of hardware. Focusing on these build realities ensures that the GeForce RTX 4080 Super remains a silent and steady workhorse rather than a source of thermal noise or system instability in a poorly ventilated room.

Radeon RX 7900 XTX
Feature Analysis:

A typical thermal design power of 355W creates significant cooling pressure that defines how you must approach your chassis selection and fan configuration. While the base specifications might suggest a lower ceiling, stability requires an 850W power supply to properly insulate the system against the sudden power spikes common in high-end RDNA 3.0 hardware. Failing to provide this power headroom can result in unexpected system shutdowns during intense transitions, meaning the quality of your power delivery is just as important as the card itself. It is a high-energy component that moves a lot of hot air, so you will need a case with unrestricted intake and exhaust to keep internal temperatures from soaking your other parts.

Installation is relatively predictable because the design relies on 2x 8-pin power connectors rather than the newer, more rigid cable standards found on some competing flagships. This allows you to use standard PCIe cables from your existing power supply without needing specialized adapters or worrying about delicate cable bends near the side panel of your case. Keep in mind that these cards are physically massive and often occupy three slots, which can put significant mechanical stress on the motherboard. Using a support bracket is a practical necessity to prevent the PCB from warping under its own weight over time. It is a dense, heavy piece of engineering that demands a secure mounting environment and plenty of physical clearance.

  • The 24GB memory pool acts as a massive buffer for 4K textures and heavy asset packs, making it almost impossible to hit a memory wall in standard gaming.
  • Standard power connectors simplify the building process and allow for cleaner cable management with traditional power supply units.
  • High thermal output requires a deliberate cooling strategy involving multiple intake fans to maintain stable clock speeds during long sessions.
  • The physical dimensions of the card can obstruct other PCIe slots, so you should check your motherboard layout if you plan to use capture cards or sound cards.
  • RDNA 3.0 architecture provides a massive leap in raw hardware capacity, though this power comes at the cost of higher electricity usage and heat generation.

You are ultimately balancing raw hardware volume against the logistical requirements of a flagship-tier build. While the internal specifications are elite, the reality of living with this card involves managing its heat and ensuring your power delivery is up to the task. It is a hardware-first solution that trades software-side polish for massive physical resources and a wide memory bus. If you have the room in your case and a power supply that can weather the occasional surge, it offers a level of longevity that is hard to find in hardware with more restrictive memory configurations. It remains a serious commitment for the builder who prefers physical headroom over architectural efficiency.

GeForce RTX 4080 Super
Full Tech Specs:
Feature Specification
Name GeForce RTX 4080 Super
MSRP $999
Release Date 2024-01-08
Chipset Manufacturer NVIDIA
Memory Size 16 GB
Memory Type GDDR6X
Memory Bus 256 bit
Memory Clock 1438 MHz
Memory Bandwidth 736.3 GB/s
Base Clock 2295 MHz
Boost Clock 2550 MHz
Shading Units 10240
Ray Tracing Cores 80
TMUs 320
ROPs 112
Pixel Rate 285.6 GPixel/s
Texture Rate 816 GTexel/s
Compute Power (FP16) 52.2 TFLOPS
Compute Power (FP32) 52.2 TFLOPS
Compute Power (FP64) 816.0 GFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 1x 16-pin
TDP 320 W
Suggested PSU 800 W
Radeon RX 7900 XTX
Full Tech Specs:
Feature Specification
Product Name Radeon RX 7900 XTX
MSRP $999
Release Date 2022-11-03
Chipset Manufacturer AMD
Memory Size 24 GB
Memory Type GDDR6
Memory Bus 384 bit
Memory Clock 2500 MHz
Memory Bandwidth 960.0 GB/s
Base Clock 1929 MHz
Boost Clock 2498 MHz
Shading Units 6144
Ray Tracing Cores 96
TMUs 384
ROPs 192
Pixel Rate 479.6 GPixel/s
Texture Rate 959.2 GTexel/s
Compute Power (FP16) 122.8 TFLOPS
Compute Power (FP32) 61.4 TFLOPS
Compute Power (FP64) 1.9 TFLOPS
Architecture RDNA 3.0
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 2x 8-pin
TDP 355 W
Suggested PSU 850 W

Final Verdict

The GeForce RTX 4080 Super stands out as the superior choice for high-end builds because it strikes a more effective balance between raw power and specialized features. It brings significantly better ray tracing performance to the table due to the maturity of its dedicated RT hardware and deep software integration. While both cards handle heavy textures well, the GeForce RTX 4080 Super uses its high memory bandwidth and specialized architecture to maintain smooth performance in demanding lighting environments. For creative professionals, the CUDA ecosystem remains a massive advantage that ensures stability and speed in rendering or video software that often struggles with alternative hardware. The efficiency is also notable, as it manages to deliver high performance while maintaining a lower power draw during intense workloads.

Radeon RX 7900 XTX is a formidable powerhouse that offers a substantial memory buffer with its 24GB pool and a much wider memory bus. This massive capacity makes it an interesting option for niche workloads involving enormous 3D datasets or video editing that exceeds standard requirements. In traditional gaming scenarios that ignore ray tracing, it remains extremely competitive and often holds a slight edge due to its high raw compute numbers. However, the software stack and ray tracing tech are not as polished as what you find with the green team, which can lead to inconsistencies in the latest premium titles. At their respective $999 MSRP launch prices, the feature set on the GeForce side feels more complete for the average enthusiast.

  • Gaming: The GeForce RTX 4080 Super is the better pick for modern titles where advanced lighting and upscaling quality are priorities. The Radeon RX 7900 XTX is built for those who prefer high raw rasterization and plenty of VRAM headroom.
  • Productivity: NVIDIA's card provides better reliable results in AI and professional rendering software. The AMD card shines in memory-intensive tasks where the 384-bit bus and 24GB of memory can actually be utilized.

Buy GeForce RTX 4080 Super if you want the best ray tracing experience, access to a more versatile software ecosystem, or if you do professional rendering and AI work. Buy Radeon RX 7900 XTX if you need the massive 24GB memory buffer for specialized high-resolution projects or prefer raw rasterization performance over advanced lighting features.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.