GeForce RTX 4080 vs Intel Arc B580

Winner:
GeForce RTX 4080
Main Difference:
Superior high-resolution performance and massive hardware advantages for professional workloads.
Page Summary:
GeForce RTX 4080 is the superior choice for high-end gaming and productivity due to its significantly higher raw compute power and mature software stack. While the Intel Arc B580 enters the market as a capable budget alternative, it cannot match the architectural scale or shading capabilities of the Nvidia contender.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 4080

MSRP:
$1,199
See Current Price
Spec Sheet:
Core Count:
9728
Thread Count:
Base Clock:
2205 MHz
Boost Clock:
2505 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
320 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2022-09-20
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
82
82.2
1440p
72.5
67.6
4K
56.8
56.8
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Intel Arc B580

MSRP:
$249
See Current Price
Spec Sheet:
Core Count:
2560
Thread Count:
Base Clock:
2670 MHz
Boost Clock:
2670 MHz
Integrated Graphics:
VRAM:
12.0 GB
L3 Cache:
12.0 GB
TDP:
190 W
Socket:
192 bit
Bus Width:
192 bit
Release Date:
2024-12-13
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
35.1
37.6
1440p
29.8
29.7
4K
24.6
23.6
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 4080
Gaming Analysis:

The GeForce RTX 4080 offers performance that firmly establishes it in the high-end enthusiast category, particularly for those targeting demanding resolutions. While it sits just below the top-tier flagship of the Ada Lovelace generation, it provides a substantial lead over mid-range options and ensures a fluid experience when playing at high 1440p settings. At 4K, this card manages heavy graphical loads with stability, allowing for high settings in modern titles without the stuttering often found on lesser hardware.

The 16GB GDDR6X VRAM buffer is a significant factor for future software demands. Because it features a 256-bit bus and a generous memory pool, you can set texture quality to the highest levels. This prevents the blurry assets or the sudden hitching that can happen when a card exceeds its available video memory during demanding scenes. The architecture provides enough overhead to handle high-resolution assets and complex geometry, maintaining consistent frame delivery in sprawling open-world environments.

  • 1080p Performance: This resolution will generally result in a CPU bottleneck as the GPU has more than enough power to spare.
  • 1440p Performance: This is a primary target for the card, offering high-fidelity visuals and high frame rates across the board.
  • 4K Performance: The card handles this resolution with ease, providing a stable experience that justifies the use of a high-density display.

Ray tracing is a specific strength of the Ada Lovelace architecture and the 76 dedicated Ray Tracing Cores on this model. While heavy lighting effects can tax many systems, this card processes complex reflections and global illumination with enough efficiency to keep the experience responsive. Because of the dedicated hardware, you obtain the visual depth of advanced lighting without the massive latency penalty that often makes gameplay feel heavy or sluggish on cards with fewer specialized cores.

  • Ray Tracing Stability: Clear and reliable performance even when multiple lighting effects are active simultaneously.
  • Upscaling Technology: Support for DLSS 3 Frame Generation provides a way to maintain fluidity in titles that put a heavy load on the processor.
  • Texture Quality: The 16GB memory capacity allows for ultra-level settings without worrying about memory-related slowdowns.
Intel Arc B580
Gaming Analysis:

The Intel Arc B580 occupies a strong position for mainstream gaming where high-resolution textures and stable framerates meet. It functions as a high-performance choice for 1080p or a reliable option for 1440p settings. While the hardware can output at 4K, the experience often becomes heavy and inconsistent in demanding titles. You should treat this as a 1440p card to maintain the best visual fluidity.

The 12GB of VRAM acts as a generous buffer for modern games that carry a heavy texture tax. On cards with less memory, you often see sudden hitches or blurry textures that fail to load during fast movement. With 12GB of GDDR6, you can push texture settings to much higher levels without hitting a hardware ceiling. This extra headroom keeps your minimum framerates stable and helps prevent the micro-stutters that can disrupt a boss fight or a competitive match.

  • Native 1440p Performance: This hardware delivers a crisp experience in modern titles, allowing for smooth movement without strictly relying on upscaling to keep the game playable.
  • Ray Tracing Capability: Built on the Xe2-HPG architecture with 20 Ray Tracing cores, the B580 handles lighting and shadows with more competence than previous entries in this tier. It manages these effects without turning the screen into a slideshow.
  • The XeSS Advantage: If a game supports Intel upscaling and frame generation, you can significantly increase visual fluidity. This helps demanding titles feel much faster and more responsive on high-end displays.
  • Resizable BAR Requirement: This hardware depends on Resizable BAR support from your motherboard to function correctly. Without this feature enabled, you may notice a significant drop in performance where the game feels sluggish or unpredictable.
  • Driver Maturation: While the raw power is impressive for the launch MSRP of $249, you might occasionally encounter software friction. Some legacy games may require specific driver updates to resolve visual glitches.

The 192-bit bus width provides a wide enough data path to keep the GPU from choking when the screen gets busy. Compared to the narrower interfaces common in entry-level hardware, the B580 maintains better composure during chaotic scenes filled with complex geometry. It is a capable piece of hardware that prioritizes texture capacity and raw value for a high-quality gaming setup.

GeForce RTX 4080
Productivity Analysis:

While this hardware excels at rendering high frame rates in entertainment, it functions as a reliable anchor for professional tasks that require consistent uptime and massive memory precision. Moving into a creative workload means shifting focus from visual smoothness to stability under heavy sustained loads. The architecture transitions from a gaming powerhouse to a specialized tool for complex renders and high resolution video editing without the typical performance drops seen in lower tier components. This model provides the necessary overhead for those whose work involves massive datasets or detailed 3D assets that require immense processing resources to maintain a responsive interface.

The 16GB GDDR6X memory pool represents a substantial technical floor for modern creative production. Working with high resolution timelines or training localized data models requires significant VRAM to prevent the software from falling back on slower system memory, which often results in sluggish behavior during active editing and previewing. This capacity allows you to keep multiple professional applications open simultaneously, such as a video editor and a heavy composition tool, without experiencing the hitching that occurs when memory limits are reached. It offers a comfortable margin for mid to high level professional projects, ensuring that asset heavy scenes and 4K footage remain manageable during the most demanding stages of the creative process.

  • CUDA Core Density: With 9728 cores, this hardware manages massive parallel processing tasks that significantly reduce the time spent waiting for complex effects to calculate.
  • Memory Bandwidth: The 256-bit bus and 716.8 GB/s bandwidth ensure that data moves quickly enough to prevent stutters when scrubbing through layers of high bitrate video.
  • Dual Encoder Efficiency: The inclusion of two dedicated encoding engines allows for faster exports in high resolution formats compared to cards that process video data through a single lane.
  • Ray Tracing Acceleration: The 76 specialized cores handle light transport and shadows in 3D viewport renders, making it possible to view changes in real time rather than waiting for low resolution previews.
  • Power Management: The Ada Lovelace architecture provides high performance levels while maintaining better thermal regulation than many previous generation flagship models.

The 48.7 TFLOPS of compute power ensures that modern AI tools and automated features within professional software suites feel nearly instantaneous. Whether you are using specialized filters or complex physics simulations, the hardware processes these intensive calculations with a level of speed that supports a natural flow state. You get a highly polished software integration that remains the industry standard for most creative plugins and rendering engines. This reliability is vital for meeting tight deadlines, as it avoids the need for constant troubleshooting or driver adjustments that can disrupt a professional environment. A power supply of at least 850W is recommended to support this internal system and ensure the hardware runs reliably under full production loads.

Intel Arc B580
Productivity Analysis:

While the hardware is positioned for 1440p gaming, the B580 functions as a practical workstation component for those who need to manage large creative assets without a massive investment. The 12GB of VRAM serves as an essential guard against memory bottlenecks that often limit cheaper hardware to basic 1080p editing. When you are moving through a high resolution timeline or stacking several effects in a photograph, this extra memory capacity ensures you can continue working without the software locking up or warning you about limited resources. It provides a level of comfort that 8GB cards cannot match when a project grows in complexity.

The 192-bit bus width and the resulting 456 GB/s bandwidth keep the interface feeling snappy during data heavy operations. This wide path allows for faster transfers between the system memory and the GPU cache, which is especially noticeable when rotating complex 3D models or scrubbing through high bitrate video files. You are not just getting raw speed, you are getting the bandwidth necessary to prevent the stuttering playback that often plagues entry level cards with narrower bit buses. The 13.7 TFLOPS of compute power translates into a stable experience where the hardware remains responsive even under a sustained load.

  • Media Engine Performance: This architecture includes dedicated support for AV1 encoding, which allows video editors and streamers to export high quality files with better compression than older standards. It handles these tasks locally to save your CPU from becoming a bottleneck during the export process.
  • Acceleration for Tools: The inclusion of 160 XMX engines provides a dedicated path for tasks that use machine learning or AI based software features. You will see faster results when using local tools for image expansion, noise reduction, or complex masking compared to hardware that lacks specialized silicon for these calculations.
  • 3D Viewport Handling: With 20 Ray Tracing cores, the card offers enough power to maintain a workable frame rate in a rendered viewport. It allows you to see lighting changes in real time within software like Blender so you can make creative decisions without waiting for a final render.
  • Software Compatibility: Because this platform is newer than established rivals, you may find that some professional plugins or legacy applications require specific driver updates to function. It is a trade-off where the high hardware specs are balanced against occasional manual troubleshooting in less common creative suites.
  • Power and Thermal Stability: The 190W power draw means the card stays within manageable temperatures even during long render sessions. You can rely on a 550W power supply to keep the system stable without the need for an oversized chassis or excessive cooling fans.

The raw performance of the Xe2-HPG architecture makes it a strong contender for a budget workstation. Even though it does not participate in the same software ecosystem as specialized professional cards, the raw hardware value at the launch MSRP of $249 remains difficult to overlook for independent creators. This card is built for those who prioritize memory overhead and bandwidth over brand loyalty. It is a functional tool that manages to keep up with demanding creative workloads by offering a generous amount of VRAM and a wide data interface.

GeForce RTX 4080
Feature Analysis:

A power supply rating of 850W provides the necessary headroom to manage the 320W typical TDP of this hardware, especially when accounting for the transient power spikes that occur during intense graphical transitions. While the base specification often suggests a lower starting point, higher wattage units ensure the system remains stable and prevents unexpected shutdowns when the hardware draws maximum current under load. This requirement places a premium on your choice of power delivery and necessitates a case with efficient airflow to move the substantial heat generated during long sessions. Without a clear path for exhaust, the internal ambient temperature can rise quickly enough to force the fans onto higher, louder speed profiles to maintain safe operation.

The single 16-pin power connector requires careful attention during the assembly process to ensure the cable is fully seated and has enough room for a natural curve. This interface is often stiffer than legacy cables, so checking for vertical clearance between the plug and your side panel is a practical necessity for a clean build. If you are using a standard power supply, the included adapter adds significant bulk that must be managed behind the motherboard tray or inside the shroud to prevent it from pressing against the internal components. Transitioning to a native cable on a newer power supply platform can simplify this cable management significantly by removing the need for multiple bulky adapters.

  • Physical Layout: The physical size of this card and the 16-pin connector demand a chassis with enough width to avoid putting lateral pressure on the power pins which can lead to connection issues.
  • Interface Bandwidth: Running on a full PCIe 4.0 x16 interface ensures that data moves between the system and the 16GB VRAM pool without the bandwidth restrictions found on lower-tier cards.
  • Thermal Design: The 320W thermal output means that a high-density fin stack and multiple fans are required, making this card a large triple-slot part in almost every available variant.
  • High Resolution Assets: The 16GB memory buffer acts as a safeguard when loading massive textures at 4K, ensuring that the GPU does not have to dip into slower system RAM during gameplay.
  • System Synergy: Pairing this hardware with a high-speed NVMe drive allows for faster asset streaming, which is essential for taking full advantage of the large memory capacity and the Ada Lovelace architecture.

The 256-bit memory bus provides a high level of bandwidth that matches the 16GB GDDR6X capacity, creating a balanced path for data-heavy professional assets and modern gaming textures. While this architecture is highly efficient, it still demands a commitment to a high-quality internal environment with plenty of breathing room for the cooling solution to function as intended. Neglecting case cooling can result in the fans working harder than necessary, which trade-offs acoustic comfort for thermal stability. By providing a stable power source and unobstructed air intake, you ensure the hardware operates at its peak frequency without the thermal throttling that can occur in cramped or poorly ventilated enclosures.

Intel Arc B580
Feature Analysis:

A single 8-pin power connector provides a straightforward setup process that avoids the cable management headaches often found with newer, more rigid power standards. While the technical requirements suggest a lower floor, you should pair this hardware with a 550W power supply to ensure the system remains stable when the GPU reaches its full 190W TDP during intense workloads. Relying on a unit with more capacity than the minimum spec helps prevent unexpected restarts and ensures the voltage remains consistent across all your components. This power profile makes it a relatively low-friction upgrade for most mid-sized cases that already have decent airflow.

The PCIe 4.0 x8 interface is a specific detail that matters if you are installing this card into an older motherboard. On a PCIe 3.0 platform, the reduced bandwidth can lead to slight performance inconsistencies in specific titles that move a lot of data between the processor and the 12GB of VRAM. You will get the most reliable results by combining this hardware with a modern motherboard that supports Resizable BAR, as the Xe2-HPG architecture relies on that feature to manage its memory addresses efficiently. When these settings are not configured properly, the card might struggle to Maintain its typical responsiveness in complex 1440p environments.

  • Architecture Efficiency: Running on the Xe2-HPG platform, the hardware manages modern 1440p texture loads with better thermal composure than previous generations.
  • Cable Compatibility: The use of the standard 8-pin connector means you can use existing power supply cables without needing to buy specialized adapters or worrying about connector clearance.
  • VRAM Headroom: Having 12GB of memory offers a comfortable safety net for high-resolution assets, which is increasingly necessary as modern titles demand more space for textures and lighting data.
  • Platform Requirements: Proper Windows 11 updates and a BIOS with Resizable BAR enabled are necessary to unlock the full potential of the silicon and avoid stuttering.
  • Cooling Considerations: With a 190W power draw, the card generates enough heat that you will want at least two active intake fans in your chassis to prevent the internal air from becoming stagnant during long sessions.

The 456 GB/s bandwidth provided by the 192-bit bus width keeps the hardware from feeling restricted when many objects are on the screen. It is a practical piece of hardware that focuses on providing a wide data path and significant memory capacity for a launch MSRP of $249. Instead of leaning on a complex ecosystem of proprietary software, it provides the physical specs required to handle demanding visuals and creative rendering tasks. So long as your motherboard is relatively modern and your power supply meets the 550W recommendation, the installation is a predictable and rewarding process.

GeForce RTX 4080
Full Tech Specs:
Feature Specification
Product Name GeForce RTX 4080
MSRP $1,199
Release Date 2022-09-20
Manufacturer NVIDIA
Memory Size 16 GB
Memory Type GDDR6X
Memory Bus 256 bit
Memory Clock 1400 MHz
Memory Bandwidth 716.8 GB/s
Base Clock 2205 MHz
Boost Clock 2505 MHz
Shading Units 9728
Ray Tracing Cores 76
TMUs 304
ROPs 112
Pixel Rate 280.6 GPixel/s
Texture Rate 761.5 GTexel/s
Compute Power (FP16) 48.7 TFLOPS
Compute Power (FP32) 48.7 TFLOPS
Compute Power (FP64) 761.5 GFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 1x 16-pin
TDP 320 W
Suggested PSU 800 W
Intel Arc B580
Full Tech Specs:
Feature Specification
Model Name Intel Arc B580
MSRP $249
Release Date 2024-12-13
Manufacturer Intel
Memory Size 12 GB
Memory Type GDDR6
Memory Bus 192 bit
Memory Clock 2375 MHz
Memory Bandwidth 456.0 GB/s
Base Clock 2670 MHz
Boost Clock 2670 MHz
Shading Units 2560
Ray Tracing Cores 20
TMUs 160
ROPs 80
Pixel Rate 213.6 GPixel/s
Texture Rate 427.2 GTexel/s
Compute Power (FP16) 27.3 TFLOPS
Compute Power (FP32) 13.7 TFLOPS
Compute Power (FP64) 1.7 TFLOPS
Architecture Xe2-HPG
Process Size 5 nm
Interface PCIe 4.0 x8
Power Connectors 1x 8-pin
TDP 190 W
Suggested PSU 550 W

Final Verdict

The GeForce RTX 4080 stands as the dominant force in this comparison for anyone prioritizing uncompromising performance. Built on the Ada Lovelace architecture, this card utilizes 5nm process technology to house 9728 shading units and 76 dedicated ray tracing cores. These hardware internals allow it to deliver a massive lead in raw computational throughput and high-resolution gaming compared to the more modest hardware found in the Intel camp. The inclusion of 16GB of GDDR6X memory on a wide 256-bit bus provides the bandwidth necessary for complex textures and heavy creative assets that would otherwise saturate smaller cards. Professional users will find that the mature driver ecosystem and specialized cores make light work of rendering and local AI tasks.

Intel enters the arena with the Arc B580 based on the Xe2-HPG architecture, which represents a significant step forward for their hardware lineup. This part features 12GB of GDDR6 memory and 20 ray tracing cores, positioning it as a capable entry-level companion for modern systems. While it lacks the sheer muscle of the Nvidia flagship, its inclusion of XeSS and modern media engines provides a functional experience for those who do not require the absolute highest settings. Users must ensure their motherboards support Resizable BAR to get the most out of the Battlemage architecture, as performance can vary significantly without this motherboard feature enabled. The gap in raw shading power remains substantial, with the GeForce RTX 4080 offering much faster processing across both standard and ray-traced lightning scenarios.

  • Buy GeForce RTX 4080 if you want an elite gaming experience, require the high bandwidth provided by GDDR6X memory for professional creative applications, or need the most reliable ray tracing performance available for high-resolution setups.
  • Buy Intel Arc B580 if you are building a budget-conscious system, prioritize modern AV1 video encoding capabilities, and want a functional card that handles modern titles without requiring the massive power draw of a flagship enthusiast component.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.