GeForce RTX 4080 vs Radeon RX 7800 XT

Winner:
GeForce RTX 4080
Main Difference:
Superior high-resolution performance and ray tracing capabilities at a significantly higher premium.
Page Summary:
GeForce RTX 4080 provides a massive generational leap in raw power and specialized hardware for lighting effects, making it a better choice for high-end setups despite its much higher $1,199 MSRP compared to the budget-friendly alternative.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 4080

MSRP:
$1,199
See Current Price
Spec Sheet:
Core Count:
9728
Thread Count:
Base Clock:
2205 MHz
Boost Clock:
2505 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
320 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2022-09-20
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
82
82.2
1440p
72.5
67.6
4K
56.8
56.8
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Radeon RX 7800 XT

MSRP:
$499
See Current Price
Spec Sheet:
Core Count:
3840
Thread Count:
Base Clock:
1295 MHz
Boost Clock:
2430 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
263 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2023-08-25
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
56.9
46
1440p
48.3
35.7
4K
38.4
30.2
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 4080
Gaming Analysis:

The GeForce RTX 4080 offers performance that firmly establishes it in the high-end enthusiast category, particularly for those targeting demanding resolutions. While it sits just below the top-tier flagship of the Ada Lovelace generation, it provides a substantial lead over mid-range options and ensures a fluid experience when playing at high 1440p settings. At 4K, this card manages heavy graphical loads with stability, allowing for high settings in modern titles without the stuttering often found on lesser hardware.

The 16GB GDDR6X VRAM buffer is a significant factor for future software demands. Because it features a 256-bit bus and a generous memory pool, you can set texture quality to the highest levels. This prevents the blurry assets or the sudden hitching that can happen when a card exceeds its available video memory during demanding scenes. The architecture provides enough overhead to handle high-resolution assets and complex geometry, maintaining consistent frame delivery in sprawling open-world environments.

  • 1080p Performance: This resolution will generally result in a CPU bottleneck as the GPU has more than enough power to spare.
  • 1440p Performance: This is a primary target for the card, offering high-fidelity visuals and high frame rates across the board.
  • 4K Performance: The card handles this resolution with ease, providing a stable experience that justifies the use of a high-density display.

Ray tracing is a specific strength of the Ada Lovelace architecture and the 76 dedicated Ray Tracing Cores on this model. While heavy lighting effects can tax many systems, this card processes complex reflections and global illumination with enough efficiency to keep the experience responsive. Because of the dedicated hardware, you obtain the visual depth of advanced lighting without the massive latency penalty that often makes gameplay feel heavy or sluggish on cards with fewer specialized cores.

  • Ray Tracing Stability: Clear and reliable performance even when multiple lighting effects are active simultaneously.
  • Upscaling Technology: Support for DLSS 3 Frame Generation provides a way to maintain fluidity in titles that put a heavy load on the processor.
  • Texture Quality: The 16GB memory capacity allows for ultra-level settings without worrying about memory-related slowdowns.
Radeon RX 7800 XT
Gaming Analysis:

The Radeon RX 7800 XT functions as a high-tier option for enthusiasts focusing on 1440p performance. It relies on sheer bandwidth and a large memory pool to handle demanding textures, though you will likely see the hardware struggle at 4K unless you use upscaling to stabilize the experience. The performance profile favors traditional rendering where the card can push high frame rates with ease, but the experience becomes more of a struggle when you enable intensive ray-tracing effects that tax the RDNA 3.0 architecture.

  • The 16GB GDDR6 VRAM buffer is a significant advantage for long-term use. As modern titles demand more memory for high-resolution assets, this card provides enough overhead to keep texture settings high without the stuttering common on cards with smaller memory banks. It allows you to push the visual quality of world details without hitting a sudden wall that causes inconsistent frame delivery.
  • Rasterization is the clear strength of this card. At 1440p, it delivers fluid performance in competitive titles and heavy AAA releases alike, often showing a raw speed advantage over competitors like the RTX 4070. At lower resolutions, you might even find your processor becomes the bottleneck because the GPU handles standard rendering tasks so quickly.
  • Ray tracing remains a demanding task for this hardware. Even with 60 dedicated cores, heavy lighting implementations can cause a major drop in fluidity. For titles with complex path tracing or global illumination, you may need to keep these settings at more modest levels to maintain a smooth experience without the game becoming choppy.
  • Upscaling via FSR is an important tool if you want to attempt 4K gaming. Running at 4K native often results in lower responsiveness that is hard to ignore in fast-paced scenes. Using quality-focused upscaling modes helps maintain visual clarity while bringing the performance back into a playable range.
  • Power requirements are notable for this model. Considering the boost clock speeds and the architecture, a 750W power supply is recommended to handle the hardware during heavy gaming loads. The design focuses on raw memory bandwidth and traditional speed rather than maximum power efficiency, so expect the card to generate a fair amount of heat during long sessions.
GeForce RTX 4080
Productivity Analysis:

While this hardware excels at rendering high frame rates in entertainment, it functions as a reliable anchor for professional tasks that require consistent uptime and massive memory precision. Moving into a creative workload means shifting focus from visual smoothness to stability under heavy sustained loads. The architecture transitions from a gaming powerhouse to a specialized tool for complex renders and high resolution video editing without the typical performance drops seen in lower tier components. This model provides the necessary overhead for those whose work involves massive datasets or detailed 3D assets that require immense processing resources to maintain a responsive interface.

The 16GB GDDR6X memory pool represents a substantial technical floor for modern creative production. Working with high resolution timelines or training localized data models requires significant VRAM to prevent the software from falling back on slower system memory, which often results in sluggish behavior during active editing and previewing. This capacity allows you to keep multiple professional applications open simultaneously, such as a video editor and a heavy composition tool, without experiencing the hitching that occurs when memory limits are reached. It offers a comfortable margin for mid to high level professional projects, ensuring that asset heavy scenes and 4K footage remain manageable during the most demanding stages of the creative process.

  • CUDA Core Density: With 9728 cores, this hardware manages massive parallel processing tasks that significantly reduce the time spent waiting for complex effects to calculate.
  • Memory Bandwidth: The 256-bit bus and 716.8 GB/s bandwidth ensure that data moves quickly enough to prevent stutters when scrubbing through layers of high bitrate video.
  • Dual Encoder Efficiency: The inclusion of two dedicated encoding engines allows for faster exports in high resolution formats compared to cards that process video data through a single lane.
  • Ray Tracing Acceleration: The 76 specialized cores handle light transport and shadows in 3D viewport renders, making it possible to view changes in real time rather than waiting for low resolution previews.
  • Power Management: The Ada Lovelace architecture provides high performance levels while maintaining better thermal regulation than many previous generation flagship models.

The 48.7 TFLOPS of compute power ensures that modern AI tools and automated features within professional software suites feel nearly instantaneous. Whether you are using specialized filters or complex physics simulations, the hardware processes these intensive calculations with a level of speed that supports a natural flow state. You get a highly polished software integration that remains the industry standard for most creative plugins and rendering engines. This reliability is vital for meeting tight deadlines, as it avoids the need for constant troubleshooting or driver adjustments that can disrupt a professional environment. A power supply of at least 850W is recommended to support this internal system and ensure the hardware runs reliably under full production loads.

Radeon RX 7800 XT
Productivity Analysis:

While the hardware is designed to excel in high-resolution gaming, the transition into a professional workstation environment reveals a card defined by raw memory capacity rather than specialized software optimization. You are looking at a component that trades the heavy industry polish of competing ecosystems for sheer silicon volume. If you intend to use this for creative work, the decision rests on whether the 16GB memory buffer outweighs the lack of specialized acceleration found in certain proprietary production pipelines. It serves as a heavy lifting tool for texture-heavy projects even as it finds less footing in certain specialized rendering tasks that rely on deep software integration or specific proprietary standards. Using this card for the right creative job makes it a functional workhorse, whereas forcing it into a workflow locked to specific third-party proprietary standards might leave you wishing for more specialized driver support.

  • The 16GB VRAM capacity acts as a significant buffer against memory limitations that can stall productivity on cards with smaller pools. While lower memory counts can create a hard wall for high-resolution video timelines or complex 3D scenes, this 256-bit bus allows you to load substantial assets without the system stuttering under the weight of the project. It provides a level of breathing room that allows for running multiple intensive creative applications simultaneously without hitting sudden performance drops when a project expands in complexity.
  • A memory bandwidth of over 620 GB/s ensures that data moves quickly enough to keep the user experience feeling responsive during active editing. You can feel this speed when scrubbing through a high-bitrate video timeline or manipulating large texture files because the hardware does not struggle to feed the processing cores during heavy data ingestion. This high-speed data highway provides a tactile precision that is often absent on cards with narrower buses which can feel sluggish when handled under heavy production loads.
  • The software ecosystem requires an understanding of the trade-offs involved when moving away from industry-standard proprietary rendering paths. In applications like Blender, the 60 ray tracing cores provide hardware-level acceleration, yet you may find that software specifically tuned for the competition still completes complex renders with more efficiency. You are essentially choosing a path of raw hardware value over the highly refined professional support and specialized stability offered by competing architectures that have dominated the professional space for years.
  • Local AI acceleration is handled through the FP16 compute performance which serves as the engine for modern tools like generative image generation or neural engine noise reduction. While the card does not utilize the same specialized tensor hardware as some competitors, it remains a capable local accelerator for many open-source models and creative suites. This provides enough power to experiment with and ship complex projects involving modern machine learning tools even if the card is not a dedicated enterprise AI solution.
  • The media engine includes hardware support for AV1 encoding which has become a vital standard for modern archival and high-quality video delivery. Creators can produce high-quality exports without the massive processing penalty that historically affected older architectures, keeping the rest of the system responsive while a video finishes in the background. A 750W power supply is recommended to maintain stability when the card is pushed to its limits during these long rendering or encoding sessions.
GeForce RTX 4080
Feature Analysis:

A power supply rating of 850W provides the necessary headroom to manage the 320W typical TDP of this hardware, especially when accounting for the transient power spikes that occur during intense graphical transitions. While the base specification often suggests a lower starting point, higher wattage units ensure the system remains stable and prevents unexpected shutdowns when the hardware draws maximum current under load. This requirement places a premium on your choice of power delivery and necessitates a case with efficient airflow to move the substantial heat generated during long sessions. Without a clear path for exhaust, the internal ambient temperature can rise quickly enough to force the fans onto higher, louder speed profiles to maintain safe operation.

The single 16-pin power connector requires careful attention during the assembly process to ensure the cable is fully seated and has enough room for a natural curve. This interface is often stiffer than legacy cables, so checking for vertical clearance between the plug and your side panel is a practical necessity for a clean build. If you are using a standard power supply, the included adapter adds significant bulk that must be managed behind the motherboard tray or inside the shroud to prevent it from pressing against the internal components. Transitioning to a native cable on a newer power supply platform can simplify this cable management significantly by removing the need for multiple bulky adapters.

  • Physical Layout: The physical size of this card and the 16-pin connector demand a chassis with enough width to avoid putting lateral pressure on the power pins which can lead to connection issues.
  • Interface Bandwidth: Running on a full PCIe 4.0 x16 interface ensures that data moves between the system and the 16GB VRAM pool without the bandwidth restrictions found on lower-tier cards.
  • Thermal Design: The 320W thermal output means that a high-density fin stack and multiple fans are required, making this card a large triple-slot part in almost every available variant.
  • High Resolution Assets: The 16GB memory buffer acts as a safeguard when loading massive textures at 4K, ensuring that the GPU does not have to dip into slower system RAM during gameplay.
  • System Synergy: Pairing this hardware with a high-speed NVMe drive allows for faster asset streaming, which is essential for taking full advantage of the large memory capacity and the Ada Lovelace architecture.

The 256-bit memory bus provides a high level of bandwidth that matches the 16GB GDDR6X capacity, creating a balanced path for data-heavy professional assets and modern gaming textures. While this architecture is highly efficient, it still demands a commitment to a high-quality internal environment with plenty of breathing room for the cooling solution to function as intended. Neglecting case cooling can result in the fans working harder than necessary, which trade-offs acoustic comfort for thermal stability. By providing a stable power source and unobstructed air intake, you ensure the hardware operates at its peak frequency without the thermal throttling that can occur in cramped or poorly ventilated enclosures.

Radeon RX 7800 XT
Feature Analysis:

A typical 263 W power draw means this hardware generates substantial heat that your case fans must exhaust to prevent internal temperatures from climbing during long gaming sessions. Relying on two standard 8-pin PCIe cables, the card avoids the stiffness and cable management complexity often associated with newer 16-pin power standards found on high-end competitors. This physical layout makes the installation process significantly more intuitive for builders using older but reliable power supplies that lack specialized connectors. While the 600 W minimum specification is technically functional, moving to a 750W power supply provides the necessary electrical headroom to absorb the sudden power spikes that occur when the architecture transitions from idle to full load. This extra capacity ensures the system remains stable and prevents the sudden shutdowns that can happen when a power supply is pushed too close to its theoretical limit by a hungry GPU and a modern processor working in tandem.

  • The 16.0 GB VRAM buffer behaves like long-term insurance for your build because it prevents the stuttering and texture pop-in that can occur when 1440p assets exceed the capacity of smaller memory banks.
  • A PCIe 4.0 x16 interface ensures you are utilizing the full bandwidth available from your motherboard which is particularly helpful if you are installing this into a system with an older PCIe 3.0 slot.
  • The RDNA 3.0 architecture focuses on traditional rendering speed rather than proprietary software hacks, making it a straightforward choice for those who prefer consistent frames over experimental lighting features.
  • While the physical mounting is simple, the card occupies considerable space in the chassis and requires plenty of unobstructed airflow to maintain its boost clock speeds without the fans needing to spin at distracting volumes.
  • The launch MSRP of $499 established this card as a high-value contender for builders who prioritize raw memory capacity and 256-bit bus width over the specialized AI features found in other ecosystems.
GeForce RTX 4080
Full Tech Specs:
Feature Specification
Product Name GeForce RTX 4080
MSRP $1,199
Release Date 2022-09-20
Manufacturer NVIDIA
Memory Size 16 GB
Memory Type GDDR6X
Memory Bus 256 bit
Memory Clock 1400 MHz
Memory Bandwidth 716.8 GB/s
Base Clock 2205 MHz
Boost Clock 2505 MHz
Shading Units 9728
Ray Tracing Cores 76
TMUs 304
ROPs 112
Pixel Rate 280.6 GPixel/s
Texture Rate 761.5 GTexel/s
Compute Power (FP16) 48.7 TFLOPS
Compute Power (FP32) 48.7 TFLOPS
Compute Power (FP64) 761.5 GFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 1x 16-pin
TDP 320 W
Suggested PSU 800 W
Radeon RX 7800 XT
Full Tech Specs:
Feature Specification
Model Name Radeon RX 7800 XT
MSRP $499
Release Date 2023-08-25
Chipset Manufacturer AMD
Memory Size 16 GB
Memory Type GDDR6
Memory Bus 256 bit
Memory Clock 2438 MHz
Memory Bandwidth 624.1 GB/s
Base Clock 1295 MHz
Boost Clock 2430 MHz
Shading Units 3840
Ray Tracing Cores 60
TMUs 240
ROPs 96
Pixel Rate 233.3 GPixel/s
Texture Rate 583.2 GTexel/s
Compute Power (FP16) 74.7 TFLOPS
Compute Power (FP32) 37.3 TFLOPS
Compute Power (FP64) 1.2 TFLOPS
Architecture RDNA 3.0
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 2x 8-pin
TDP 263 W
Suggested PSU 700 W

Final Verdict

The GeForce RTX 4080 stands out as a high-tier powerhouse that leverages the Ada Lovelace architecture to deliver a substantial performance gap over the competition. It features dedicated hardware for advanced frame generation and specialized ray tracing cores that allow it to maintain smooth visuals when graphical demands are at their peak. While the Radeon RX 7800 XT utilizes a smart RDNA 3 chiplet design to offer respectable speeds for many users, it lacks the raw shading units and the ultra-fast GDDR6X memory found in the NVIDIA flagship. This difference in hardware leads to the GeForce RTX 4080 being roughly fifty percent faster in standard rasterization and nearly ninety percent faster when complex light simulations are enabled. The $1,199 MSRP reflects this massive technical advantage, providing a level of headroom that the $499 MSRP competitor simply cannot match in heavy workloads.

Efficiency is another area where the GeForce RTX 4080 shines because it manages to deliver vastly superior output while maintaining impressive thermal control. For users focused on professional applications, the inclusion of CUDA cores and high memory bandwidth makes it a versatile tool for rendering or AI processing. The Radeon RX 7800 XT remains a strong choice for those who want a great experience without the extreme entry cost, but it cannot bridge the performance chasm established by the higher-end card. The decision comes down to whether you prefer a balanced value or if you want the absolute best fidelity possible in modern applications.

  • Buy GeForce RTX 4080 if you demand maximum performance for 4K gaming, ray tracing, or CUDA-accelerated tasks like AI and video editing, and are willing to pay a premium for top-tier features.
  • Buy Radeon RX 7800 XT if you seek solid 1440p gaming on a budget, value its 16GB VRAM for future-proofing, and don’t require NVIDIA’s ecosystem or advanced ray tracing capabilities.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.