GeForce RTX 4080 vs Radeon RX 9060 XT 8GB

Winner:
GeForce RTX 4080
Main Difference:
Double the memory capacity and significantly higher memory bandwidth for intensive workloads
Page Summary:
GeForce RTX 4080 provides a massive performance leap over the Radeon RX 9060 XT 8GB, offering superior memory bandwidth and specialized hardware for high-end rendering. While the Radeon option targets a much lower entry point at launch MSRP, the NVIDIA card remains the better choice for demanding users.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 4080

MSRP:
$1,199
See Current Price
Spec Sheet:
Core Count:
9728
Thread Count:
Base Clock:
2205 MHz
Boost Clock:
2505 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
320 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2022-09-20
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
82
82.2
1440p
72.5
67.6
4K
56.8
56.8
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Radeon RX 9060 XT 8GB

MSRP:
$299
See Current Price
Spec Sheet:
Core Count:
2048
Thread Count:
Base Clock:
1700 MHz
Boost Clock:
3130 MHz
Integrated Graphics:
VRAM:
8.0 GB
L3 Cache:
8.0 GB
TDP:
150 W
Socket:
128 bit
Bus Width:
128 bit
Release Date:
2025-06-04
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
44.5
39.7
1440p
32.3
30.4
4K
22.9
24.4
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 4080
Gaming Analysis:

The GeForce RTX 4080 offers performance that firmly establishes it in the high-end enthusiast category, particularly for those targeting demanding resolutions. While it sits just below the top-tier flagship of the Ada Lovelace generation, it provides a substantial lead over mid-range options and ensures a fluid experience when playing at high 1440p settings. At 4K, this card manages heavy graphical loads with stability, allowing for high settings in modern titles without the stuttering often found on lesser hardware.

The 16GB GDDR6X VRAM buffer is a significant factor for future software demands. Because it features a 256-bit bus and a generous memory pool, you can set texture quality to the highest levels. This prevents the blurry assets or the sudden hitching that can happen when a card exceeds its available video memory during demanding scenes. The architecture provides enough overhead to handle high-resolution assets and complex geometry, maintaining consistent frame delivery in sprawling open-world environments.

  • 1080p Performance: This resolution will generally result in a CPU bottleneck as the GPU has more than enough power to spare.
  • 1440p Performance: This is a primary target for the card, offering high-fidelity visuals and high frame rates across the board.
  • 4K Performance: The card handles this resolution with ease, providing a stable experience that justifies the use of a high-density display.

Ray tracing is a specific strength of the Ada Lovelace architecture and the 76 dedicated Ray Tracing Cores on this model. While heavy lighting effects can tax many systems, this card processes complex reflections and global illumination with enough efficiency to keep the experience responsive. Because of the dedicated hardware, you obtain the visual depth of advanced lighting without the massive latency penalty that often makes gameplay feel heavy or sluggish on cards with fewer specialized cores.

  • Ray Tracing Stability: Clear and reliable performance even when multiple lighting effects are active simultaneously.
  • Upscaling Technology: Support for DLSS 3 Frame Generation provides a way to maintain fluidity in titles that put a heavy load on the processor.
  • Texture Quality: The 16GB memory capacity allows for ultra-level settings without worrying about memory-related slowdowns.
Radeon RX 9060 XT 8GB
Gaming Analysis:

The Radeon RX 9060 XT 8GB is built for high performance at standard resolutions. While the RDNA 4 architecture reaches a high boost clock of 3130 MHz, the physical hardware is localized around a specific performance tier. It provides excellent fluid movement in competitive esports titles but begins to show its limits in heavy cinematic games. If you try to push this card into higher resolutions like 1440p or 4K, you will notice a steep drop in responsiveness as the memory configuration struggles to keep up with the data demand.

The 8.0 GB of VRAM serves as a hard ceiling for visual fidelity. Modern games require significant texture space, and having 8GB means you must be careful with your graphics presets. In demanding open world titles, you may encounter sudden hitches or micro-stuttering if you attempt to use maximum texture settings. You will likely find yourself balancing the sliders between medium and high to ensure the gameplay remains consistent when moving into complex or densely populated environments.

  • Standard Resolution Performance: Crisp and reliable. You can expect very high frame rates and smooth input as long as texture settings remain within the local memory limits.
  • Higher Resolution Performance: Difficult to maintain. The 128 bit bus width acts as a narrow pipe that restricts the flow of data, making transitions feel sluggish and inconsistent above the target resolution.
  • Flagship Resolution Verdict: Extreme. The card lacks the memory bandwidth and raw grunt required to produce a functional experience at the highest resolutions.

Ray tracing performance is modest because the card features 32 dedicated Ray Tracing cores. While the technology is present, activating complex lighting and reflections often results in a significant hit to fluidity. For the best experience in heavy titles, you are better off relying on the raw rasterization power and utilizing FSR 4 upscaling to maintain sharp visuals. Using the AI driven features of FSR 4 allows you to reclaim some of the speed lost to the hardware limitations, though it cannot physically expand the 8GB memory buffer.

Because the RDNA 4 architecture supports advanced software features, you can use these tools to bridge the gap in demanding scenarios. This helps the hardware feel more responsive in titles that might otherwise push it to the breaking point. It is a capable choice for a specific tier of gaming, provided you understand that the memory capacity dictates the rules of your graphics menu.

GeForce RTX 4080
Productivity Analysis:

While this hardware excels at rendering high frame rates in entertainment, it functions as a reliable anchor for professional tasks that require consistent uptime and massive memory precision. Moving into a creative workload means shifting focus from visual smoothness to stability under heavy sustained loads. The architecture transitions from a gaming powerhouse to a specialized tool for complex renders and high resolution video editing without the typical performance drops seen in lower tier components. This model provides the necessary overhead for those whose work involves massive datasets or detailed 3D assets that require immense processing resources to maintain a responsive interface.

The 16GB GDDR6X memory pool represents a substantial technical floor for modern creative production. Working with high resolution timelines or training localized data models requires significant VRAM to prevent the software from falling back on slower system memory, which often results in sluggish behavior during active editing and previewing. This capacity allows you to keep multiple professional applications open simultaneously, such as a video editor and a heavy composition tool, without experiencing the hitching that occurs when memory limits are reached. It offers a comfortable margin for mid to high level professional projects, ensuring that asset heavy scenes and 4K footage remain manageable during the most demanding stages of the creative process.

  • CUDA Core Density: With 9728 cores, this hardware manages massive parallel processing tasks that significantly reduce the time spent waiting for complex effects to calculate.
  • Memory Bandwidth: The 256-bit bus and 716.8 GB/s bandwidth ensure that data moves quickly enough to prevent stutters when scrubbing through layers of high bitrate video.
  • Dual Encoder Efficiency: The inclusion of two dedicated encoding engines allows for faster exports in high resolution formats compared to cards that process video data through a single lane.
  • Ray Tracing Acceleration: The 76 specialized cores handle light transport and shadows in 3D viewport renders, making it possible to view changes in real time rather than waiting for low resolution previews.
  • Power Management: The Ada Lovelace architecture provides high performance levels while maintaining better thermal regulation than many previous generation flagship models.

The 48.7 TFLOPS of compute power ensures that modern AI tools and automated features within professional software suites feel nearly instantaneous. Whether you are using specialized filters or complex physics simulations, the hardware processes these intensive calculations with a level of speed that supports a natural flow state. You get a highly polished software integration that remains the industry standard for most creative plugins and rendering engines. This reliability is vital for meeting tight deadlines, as it avoids the need for constant troubleshooting or driver adjustments that can disrupt a professional environment. A power supply of at least 850W is recommended to support this internal system and ensure the hardware runs reliably under full production loads.

Radeon RX 9060 XT 8GB
Productivity Analysis:

While the hardware handles high speed frame rates during play, the transition to a professional workspace reveals a different set of priorities where the 8.0 GB memory buffer becomes the primary constraint. The RDNA 4 architecture provides a high level of raw compute power, but professional stability relies on having enough headroom for large assets and complex layers. You may find that while the card is capable of processing data quickly, it lacks the physical space to hold the massive amounts of information required for high resolution creative projects. This results in a lopsided experience where the core is ready to work but the memory capacity creates a narrow ceiling for your productivity.

Working with modern creative suites often requires significant texture memory and frame buffer space to remain responsive. If you are editing high bit rate footage or applying heavy noise reduction, the 8GB VRAM limit can lead to sluggish timeline scrubbing and slowdowns as the system tries to manage the data overflow. The high FP16 performance of 51.3 TFLOPS means the card is quite fast for static image manipulation and certain AI tools, but that speed does not translate to every professional scenario. You are dealing with a design that favors rapid data throughput over the sheer volume required for dense 3D scenes or long video exports.

  • Video Editing Projects. Scrubbing through standard timelines feels snappy, but moving to high resolution projects can lead to sticky playback when multiple video layers are active.
  • 3D Design Software. The 32 ray tracing cores offer decent speed for modeling, though complex geometry may exceed the local memory and force the system to rely on slower system RAM.
  • AI Image Tools. General image manipulation and generative tasks feel responsive due to the high compute throughput of the architecture.
  • Media Archival and Streaming. The inclusion of dedicated hardware encoding offloads the heavy lifting from your processor, which keeps the entire system responsive during long broadcasts.
  • Stability and Drivers. Professional plugins and specialized rendering engines are often optimized for specific ecosystems, so you should ensure your primary software is well supported on this platform.

The memory bandwidth of 322.3 GB/s allows for a fast exchange between the GPU and the rest of your system, which is a significant advantage for shorter, punchy tasks. However, in a workstation environment, you are essentially balancing raw speed against the risk of hitting a physical memory wall during a deadline. For the generalist who needs to jump between 3D modeling and photo editing, the card serves as a capable entry point rather than a dedicated professional tool. It is an efficient choice for users who understand the specific limits of an 8GB buffer and plan their workloads accordingly.

GeForce RTX 4080
Feature Analysis:

A power supply rating of 850W provides the necessary headroom to manage the 320W typical TDP of this hardware, especially when accounting for the transient power spikes that occur during intense graphical transitions. While the base specification often suggests a lower starting point, higher wattage units ensure the system remains stable and prevents unexpected shutdowns when the hardware draws maximum current under load. This requirement places a premium on your choice of power delivery and necessitates a case with efficient airflow to move the substantial heat generated during long sessions. Without a clear path for exhaust, the internal ambient temperature can rise quickly enough to force the fans onto higher, louder speed profiles to maintain safe operation.

The single 16-pin power connector requires careful attention during the assembly process to ensure the cable is fully seated and has enough room for a natural curve. This interface is often stiffer than legacy cables, so checking for vertical clearance between the plug and your side panel is a practical necessity for a clean build. If you are using a standard power supply, the included adapter adds significant bulk that must be managed behind the motherboard tray or inside the shroud to prevent it from pressing against the internal components. Transitioning to a native cable on a newer power supply platform can simplify this cable management significantly by removing the need for multiple bulky adapters.

  • Physical Layout: The physical size of this card and the 16-pin connector demand a chassis with enough width to avoid putting lateral pressure on the power pins which can lead to connection issues.
  • Interface Bandwidth: Running on a full PCIe 4.0 x16 interface ensures that data moves between the system and the 16GB VRAM pool without the bandwidth restrictions found on lower-tier cards.
  • Thermal Design: The 320W thermal output means that a high-density fin stack and multiple fans are required, making this card a large triple-slot part in almost every available variant.
  • High Resolution Assets: The 16GB memory buffer acts as a safeguard when loading massive textures at 4K, ensuring that the GPU does not have to dip into slower system RAM during gameplay.
  • System Synergy: Pairing this hardware with a high-speed NVMe drive allows for faster asset streaming, which is essential for taking full advantage of the large memory capacity and the Ada Lovelace architecture.

The 256-bit memory bus provides a high level of bandwidth that matches the 16GB GDDR6X capacity, creating a balanced path for data-heavy professional assets and modern gaming textures. While this architecture is highly efficient, it still demands a commitment to a high-quality internal environment with plenty of breathing room for the cooling solution to function as intended. Neglecting case cooling can result in the fans working harder than necessary, which trade-offs acoustic comfort for thermal stability. By providing a stable power source and unobstructed air intake, you ensure the hardware operates at its peak frequency without the thermal throttling that can occur in cramped or poorly ventilated enclosures.

Radeon RX 9060 XT 8GB
Feature Analysis:

The 8.0 GB of VRAM establishes a specific boundary for your build longevity and texture settings. While the RDNA 4 architecture provides a significant uplift in processing speed, this memory capacity acts as a fixed ceiling that requires a practical approach to in game menus. You will likely find that as new releases demand more from your hardware, keeping texture quality at a manageable level becomes necessary to avoid the stuttering and data congestion that occurs when the local buffer is fully saturated. It is a capable component for focused builds, provided you are comfortable managing these technical limits over the next several years.

Power requirements are straightforward with a 150 W typical draw, which makes the card relatively easy to cool in most standard cases. While the manufacturer sets a baseline, pairing this card with a 550 W power supply ensures you have enough quiet breathing room to handle the brief energy spikes that often occur during intensive gaming moments. This specific model utilizes a standard 8-pin power connector, which is a major advantage for builders who want to avoid the stiffness and complexity of newer adapter standards. It plugs directly into existing cables from most modern power units, making the physical installation process clean and simple without requiring specialized hardware or a total ecosystem overhaul.

  • The PCIe 5.0 x16 interface ensures that the connection between your processor and the card is as wide as possible, which prevents the data bottlenecks often found on budget cards with fewer lanes.
  • FSR 4 provides a software based path to extending the life of your hardware by using intelligent upscaling to maintain visual clarity even when the native hardware reaches its limit.
  • Ray tracing hardware is built directly into the silicon, though the 8GB memory limit means you should be selective about which lighting effects you enable in demanding titles.
  • A single 8-pin power connector provides a reliable and familiar physical connection that works with almost any high quality power supply already sitting on your shelf.
  • Physical dimensions and thermal output are modest enough that you do not need an exotic cooling solution or a massive chassis to keep the system running effectively.

Choosing this hardware means opting for a platform that prizes raw value and open software standards. AMD has refined their driver environment significantly, though you should still expect a more hands on experience compared to other providers. This often involves small setting adjustments or checking for the latest software updates to ensure the best stability in specific creative or gaming applications. For the user who enjoys fine tuning their experience and wants a direct path to modern features without a massive power footprint, the Radeon RX 9060 XT 8GB presents a logical and efficient choice for a balanced mid-tier machine.

GeForce RTX 4080
Full Tech Specs:
Feature Specification
Product Name GeForce RTX 4080
MSRP $1,199
Release Date 2022-09-20
Manufacturer NVIDIA
Memory Size 16 GB
Memory Type GDDR6X
Memory Bus 256 bit
Memory Clock 1400 MHz
Memory Bandwidth 716.8 GB/s
Base Clock 2205 MHz
Boost Clock 2505 MHz
Shading Units 9728
Ray Tracing Cores 76
TMUs 304
ROPs 112
Pixel Rate 280.6 GPixel/s
Texture Rate 761.5 GTexel/s
Compute Power (FP16) 48.7 TFLOPS
Compute Power (FP32) 48.7 TFLOPS
Compute Power (FP64) 761.5 GFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 1x 16-pin
TDP 320 W
Suggested PSU 800 W
Radeon RX 9060 XT 8GB
Full Tech Specs:
Feature Specification
Name Radeon RX 9060 XT 8GB
MSRP $299
Release Date 2025-06-04
Chipset Manufacturer AMD
Memory Size 8 GB
Memory Type GDDR6
Memory Bus 128 bit
Memory Clock 2518 MHz
Memory Bandwidth 322.3 GB/s
Base Clock 1700 MHz
Boost Clock 3130 MHz
Shading Units 2048
Ray Tracing Cores 32
TMUs 128
ROPs 64
Pixel Rate 200.3 GPixel/s
Texture Rate 400.6 GTexel/s
Compute Power (FP16) 51.3 TFLOPS
Compute Power (FP32) 25.6 TFLOPS
Compute Power (FP64) 801.3 GFLOPS
Architecture RDNA 4.0
Process Size 4 nm
Interface PCIe 5.0 x16
Power Connectors 1x 8-pin
TDP 150 W
Suggested PSU 550 W

Final Verdict

The GeForce RTX 4080 represents a completely different class of hardware compared to the Radeon RX 9060 XT 8GB, providing a substantial advantage in both raw power and specialized features. With 16GB of high-speed GDDR6X memory and a wide 256-bit bus, the NVIDIA flagship handles dense assets and high-resolution textures without the stuttering or slowdowns that can affect cards with smaller buffers. Memory bandwidth is a major differentiator here, as the GeForce RTX 4080 offers more than double the throughput of its AMD counterpart, ensuring that data flows to the processor quickly during intense moments. Even though the Radeon RX 9060 XT 8GB arrived much later with a modern RDNA 4 architecture and a very accessible $299 MSRP, it cannot overcome the massive deficit in shading units and hardware ray tracing cores. The $1199 MSRP for the NVIDIA card reflects its status as a high-end powerhouse designed for those who want to maximize visual settings and leverage industry-standard tools like CUDA and OptiX for professional creative work. In heavy ray tracing scenarios, the GeForce RTX 4080 maintains a clear lead, utilizing its advanced Ada Lovelace architecture to process lighting and shadows with much higher efficiency. The sheer physical footprint and power requirements of the two cards illustrate the gap, with the GeForce RTX 4080 requiring significantly more power and a larger power supply to function. While the newer Radeon card adopts a more efficient 4nm process and PCIe 5.0 support, these technical additions do not translate into the same level of actual performance found in the much larger and more complex NVIDIA silicon.

  • Memory Capacity and Speed: The 16GB buffer on the GeForce RTX 4080 allows for much more breathing room in modern titles that demand high levels of video memory, whereas the 8GB on the Radeon card may face limitations sooner.
  • Creative Ecosystem: NVIDIA continues to hold a strong advantage for video editing and 3D rendering due to widespread software support for their specialized hardware cores.
  • Energy Efficiency: The Radeon RX 9060 XT 8GB is far easier to power, requiring only a single 8-pin connector and a much smaller power supply unit.
  • Launch Pricing Tiers: Users should note the massive gap in original pricing, as the GeForce RTX 4080 launched as an enthusiast-grade product while the Radeon card targeted the budget-conscious segment at $299 MSRP.

Buy GeForce RTX 4080 if you need maximum performance for high-resolution gaming and professional creative apps that benefit from a large 16GB memory buffer.

Buy Radeon RX 9060 XT 8GB if you are building a power-efficient machine on a budget and focus on standard settings without needing heavy professional hardware acceleration.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.