GeForce RTX 4080 vs Radeon RX 9070 XT

Winner:
Radeon RX 9070 XT
Main Difference:
Identical gaming performance for a lower launch MSRP compared to the RTX 4080.
Page Summary:
Radeon RX 9070 XT delivers equivalent rasterization performance to the GeForce RTX 4080 while carrying a $599 MSRP compared to the $1199 launch price of the NVIDIA card, making it the superior choice for high-end gaming value.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 4080

MSRP:
$1,199
See Current Price
Spec Sheet:
Core Count:
9728
Thread Count:
Base Clock:
2205 MHz
Boost Clock:
2505 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
320 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2022-09-20
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
82
82.2
1440p
72.5
67.6
4K
56.8
56.8
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Radeon RX 9070 XT

MSRP:
$599
See Current Price
Spec Sheet:
Core Count:
4096
Thread Count:
Base Clock:
1660 MHz
Boost Clock:
2970 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
304 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2025-03-06
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
76.1
72
1440p
68.7
58.7
4K
57.6
50
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 4080
Gaming Analysis:

The GeForce RTX 4080 offers performance that firmly establishes it in the high-end enthusiast category, particularly for those targeting demanding resolutions. While it sits just below the top-tier flagship of the Ada Lovelace generation, it provides a substantial lead over mid-range options and ensures a fluid experience when playing at high 1440p settings. At 4K, this card manages heavy graphical loads with stability, allowing for high settings in modern titles without the stuttering often found on lesser hardware.

The 16GB GDDR6X VRAM buffer is a significant factor for future software demands. Because it features a 256-bit bus and a generous memory pool, you can set texture quality to the highest levels. This prevents the blurry assets or the sudden hitching that can happen when a card exceeds its available video memory during demanding scenes. The architecture provides enough overhead to handle high-resolution assets and complex geometry, maintaining consistent frame delivery in sprawling open-world environments.

  • 1080p Performance: This resolution will generally result in a CPU bottleneck as the GPU has more than enough power to spare.
  • 1440p Performance: This is a primary target for the card, offering high-fidelity visuals and high frame rates across the board.
  • 4K Performance: The card handles this resolution with ease, providing a stable experience that justifies the use of a high-density display.

Ray tracing is a specific strength of the Ada Lovelace architecture and the 76 dedicated Ray Tracing Cores on this model. While heavy lighting effects can tax many systems, this card processes complex reflections and global illumination with enough efficiency to keep the experience responsive. Because of the dedicated hardware, you obtain the visual depth of advanced lighting without the massive latency penalty that often makes gameplay feel heavy or sluggish on cards with fewer specialized cores.

  • Ray Tracing Stability: Clear and reliable performance even when multiple lighting effects are active simultaneously.
  • Upscaling Technology: Support for DLSS 3 Frame Generation provides a way to maintain fluidity in titles that put a heavy load on the processor.
  • Texture Quality: The 16GB memory capacity allows for ultra-level settings without worrying about memory-related slowdowns.
Radeon RX 9070 XT
Gaming Analysis:

The Radeon RX 9070 XT functions as a high-performance 1440p solution that bridges the gap between enthusiast hardware and more accessible price tiers. At higher resolutions, the card maintains a steady pace across standard rasterized titles and often competes closely with more expensive alternatives. While it can handle 4K workloads, the frame delivery becomes heavier and less consistent once the pixel count increases. This card is built for the sweet spot of modern gaming setups where smooth movement is prioritized over raw resolution scaling.

The 16GB VRAM buffer serves as an insurance policy against the stuttering issues that can impact cards with smaller memory pools. You can push texture settings to their maximum in demanding titles without hitting a hard wall or seeing the distracting texture pop-in that breaks visual clarity. With a 256-bit memory bus, data moves fast enough to keep 1% low frames stable, which prevents those tiny hitches that can make a game feel choppy even when the average speed seems high.

  • Standard Rasterization: High-tier 1440p performance that remains fluid in fast-paced shooters and open-world environments.
  • Ray Tracing Reality: Hardware-accelerated lighting is a functional feature on this RDNA 4.0 architecture, though heavy path-tracing will likely require support from upscaling to avoid a sluggish image.
  • Texture Quality: The 16GB GDDR6 pool removes the ceiling on texture settings, allowing for uncompressed environments in modern games.
  • AI Upscaling: FSR 4.0 uses the new hardware accelerators to clean up edges, making the jump to higher resolutions feel more natural when you want to trade some speed for more pixels.

Ray tracing on this RDNA 4.0 part represents a notable step forward, turning lighting effects into a usable tool rather than a theoretical experiment. In games with moderate lighting implementations, reflections and shadows stay sharp without causing a total collapse in speed. You should still be mindful of extreme settings, however. Turning every lighting feature to the maximum will still punish the hardware and potentially turn a fluid experience into a flickering slideshow unless you use upscaling to help manage the load. This card requires a 850W power supply to ensure the system remains stable under heavy gaming loads.

GeForce RTX 4080
Productivity Analysis:

While this hardware excels at rendering high frame rates in entertainment, it functions as a reliable anchor for professional tasks that require consistent uptime and massive memory precision. Moving into a creative workload means shifting focus from visual smoothness to stability under heavy sustained loads. The architecture transitions from a gaming powerhouse to a specialized tool for complex renders and high resolution video editing without the typical performance drops seen in lower tier components. This model provides the necessary overhead for those whose work involves massive datasets or detailed 3D assets that require immense processing resources to maintain a responsive interface.

The 16GB GDDR6X memory pool represents a substantial technical floor for modern creative production. Working with high resolution timelines or training localized data models requires significant VRAM to prevent the software from falling back on slower system memory, which often results in sluggish behavior during active editing and previewing. This capacity allows you to keep multiple professional applications open simultaneously, such as a video editor and a heavy composition tool, without experiencing the hitching that occurs when memory limits are reached. It offers a comfortable margin for mid to high level professional projects, ensuring that asset heavy scenes and 4K footage remain manageable during the most demanding stages of the creative process.

  • CUDA Core Density: With 9728 cores, this hardware manages massive parallel processing tasks that significantly reduce the time spent waiting for complex effects to calculate.
  • Memory Bandwidth: The 256-bit bus and 716.8 GB/s bandwidth ensure that data moves quickly enough to prevent stutters when scrubbing through layers of high bitrate video.
  • Dual Encoder Efficiency: The inclusion of two dedicated encoding engines allows for faster exports in high resolution formats compared to cards that process video data through a single lane.
  • Ray Tracing Acceleration: The 76 specialized cores handle light transport and shadows in 3D viewport renders, making it possible to view changes in real time rather than waiting for low resolution previews.
  • Power Management: The Ada Lovelace architecture provides high performance levels while maintaining better thermal regulation than many previous generation flagship models.

The 48.7 TFLOPS of compute power ensures that modern AI tools and automated features within professional software suites feel nearly instantaneous. Whether you are using specialized filters or complex physics simulations, the hardware processes these intensive calculations with a level of speed that supports a natural flow state. You get a highly polished software integration that remains the industry standard for most creative plugins and rendering engines. This reliability is vital for meeting tight deadlines, as it avoids the need for constant troubleshooting or driver adjustments that can disrupt a professional environment. A power supply of at least 850W is recommended to support this internal system and ensure the hardware runs reliably under full production loads.

Radeon RX 9070 XT
Productivity Analysis:

While this hardware excels at pushing frames in a 1440p gaming environment, the conversation changes when you transition from entertainment to professional production. The Radeon RX 9070 XT transitions into a workstation tool that relies on its raw compute density and memory capacity to handle intense creative projects. You are looking for a component that stays responsive during a long editing session or when managing a dense 3D viewport where hardware limitations typically cause friction. This card offers a stable foundation for those who need to balance a heavy workload without the restrictive bottlenecks found on cards with less memory overhead.

The 16GB VRAM buffer serves as a functional boundary between a standard utility and a professional asset. High-resolution textures and complex project files require a physical space to sit, and having this much room prevents the system from stuttering when your software demand spikes. You can keep multiple creative applications open alongside a browser without seeing your workflow degrade into a choppy mess. It is a practical amount of headroom that allows for more disorganized or asset-heavy project files that would otherwise max out the memory pool on lesser hardware.

  • Video Workflows: The 256-bit bus and 644 GB/s bandwidth help with scrubbing through high-bitrate timelines so you do not experience the typical lag when moving the playhead.
  • Compute Density: With 48.7 TFLOPS of FP32 performance, the architecture handles complex mathematical calculations and rendering tasks with a level of speed that reduces your waiting time between iterations.
  • AI Tasking: The hardware accelerators provide a significant boost for neural-based tools and modern denoising features that rely on the 97.3 TFLOPS of FP16 capability.
  • Encoding Features: Dedicated AV1 support allows for faster exports and better data efficiency, keeping your machine usable for other tasks while the final file is processing.
  • Structural Reliability: The 4096 shading units provide enough raw processing power to maintain a fluid experience even as your 3D scenes grow in complexity and geometry.

You should be aware of the software ecosystem because some specialized professional tools are still heavily optimized for different proprietary languages. While RDNA 4.0 has improved the way this hardware interacts with creative suites, you might still encounter a specific plugin or niche simulation tool that requires a bit more configuration to run perfectly. This represents a trade-off where you gain a massive amount of uncompressed texture capacity and raw speed in exchange for being slightly more hands-on with your driver setup. For many freelancers, the high compute density relative to the 599 dollar MSRP at launch makes this a logical choice for a multi-purpose machine.

Managing the thermal output is necessary when the card is fully saturated during an overnight render or a long video export. It draws significant power to maintain its performance levels, which means you need an 800W power supply to keep the entire system from experiencing any power-related instability during peak usage. Making sure your case has a clear path for exhaust will prevent the heat from soaking into your other components during these heavy sessions. It is the expected behavior for a high-performance engine that trades power for the ability to handle demanding professional files without the memory-related errors that plague smaller cards.

GeForce RTX 4080
Feature Analysis:

A power supply rating of 850W provides the necessary headroom to manage the 320W typical TDP of this hardware, especially when accounting for the transient power spikes that occur during intense graphical transitions. While the base specification often suggests a lower starting point, higher wattage units ensure the system remains stable and prevents unexpected shutdowns when the hardware draws maximum current under load. This requirement places a premium on your choice of power delivery and necessitates a case with efficient airflow to move the substantial heat generated during long sessions. Without a clear path for exhaust, the internal ambient temperature can rise quickly enough to force the fans onto higher, louder speed profiles to maintain safe operation.

The single 16-pin power connector requires careful attention during the assembly process to ensure the cable is fully seated and has enough room for a natural curve. This interface is often stiffer than legacy cables, so checking for vertical clearance between the plug and your side panel is a practical necessity for a clean build. If you are using a standard power supply, the included adapter adds significant bulk that must be managed behind the motherboard tray or inside the shroud to prevent it from pressing against the internal components. Transitioning to a native cable on a newer power supply platform can simplify this cable management significantly by removing the need for multiple bulky adapters.

  • Physical Layout: The physical size of this card and the 16-pin connector demand a chassis with enough width to avoid putting lateral pressure on the power pins which can lead to connection issues.
  • Interface Bandwidth: Running on a full PCIe 4.0 x16 interface ensures that data moves between the system and the 16GB VRAM pool without the bandwidth restrictions found on lower-tier cards.
  • Thermal Design: The 320W thermal output means that a high-density fin stack and multiple fans are required, making this card a large triple-slot part in almost every available variant.
  • High Resolution Assets: The 16GB memory buffer acts as a safeguard when loading massive textures at 4K, ensuring that the GPU does not have to dip into slower system RAM during gameplay.
  • System Synergy: Pairing this hardware with a high-speed NVMe drive allows for faster asset streaming, which is essential for taking full advantage of the large memory capacity and the Ada Lovelace architecture.

The 256-bit memory bus provides a high level of bandwidth that matches the 16GB GDDR6X capacity, creating a balanced path for data-heavy professional assets and modern gaming textures. While this architecture is highly efficient, it still demands a commitment to a high-quality internal environment with plenty of breathing room for the cooling solution to function as intended. Neglecting case cooling can result in the fans working harder than necessary, which trade-offs acoustic comfort for thermal stability. By providing a stable power source and unobstructed air intake, you ensure the hardware operates at its peak frequency without the thermal throttling that can occur in cramped or poorly ventilated enclosures.

Radeon RX 9070 XT
Feature Analysis:

The 304W power draw represents a substantial thermal reality that dictates your case strategy because this card acts as a consistent heat source under heavy load. You should avoid installing this hardware in a restricted or small-form-factor chassis that lacks significant airflow because the silicon needs to maintain its clock speeds without constant thermal interruption. If your case does not have multiple intake fans and a clear path for exhaust, the internal ambient temperature will climb until the system has to compensate for the heat buildup. High performance requires high wattage, and that energy creates a dense thermal footprint that demands a high-airflow panel to keep the 16GB VRAM pool within its operational limits during long sessions.

You avoid a frequent source of cable frustration because the design uses two standard 8-pin power connectors rather than a more modern or rigid adapter configuration. This choice is a relief for builders using reliable existing power supplies who want to simply click in traditional cables and finish the build. While a base specification might suggest a lower unit, you should use an 800W power supply to provide enough cushion for the system against power spikes and to keep the unit running efficiently. This ensures the delivery of power stays stable even when the hardware is pushed to its absolute limit in the most demanding titles or production tasks.

  • Memory Capacity: The 16GB buffer provides enough space for high-resolution textures so you are not forced to lower settings when modern games allocate large amounts of memory at 1440p.
  • System Integration: The PCIe 5.0 x16 interface offers a wide path for data to travel between the CPU and the rest of the machine, removing communication concerns on the latest motherboard platforms.
  • AI Architecture: Dedicated hardware accelerators provide the local processing muscle needed for RDNA 4.0 features like FSR 4.0 to maintain visual stability.
  • Structural Physicality: The card requires careful mounting and a sturdy motherboard slot due to its size and the cooling assembly needed to manage the 304W output.
  • Build Reliability: Using standard power inputs eliminates the need for specialized cable bending or third-party adapters that can complicate the installation process.

Choosing this hardware is a specific decision to prioritize raw hardware capability over the proprietary software ecosystems that often come with a higher launch MSRP. You are investing in a machine that might run slightly warmer and requires a focused approach to cooling, yet it rewards that effort with a consistent experience that ignores the memory limitations of other mid-range cards. It is an ideal path for a builder who treats their computer as a high-performance tool that benefits from a well-ventilated environment. When you provide the necessary power headroom and air movement to respect the architecture, you get a card that handles the transition into high-resolution textures with a level of ease that justifies the physical requirements of the build.

GeForce RTX 4080
Full Tech Specs:
Feature Specification
Product Name GeForce RTX 4080
MSRP $1,199
Release Date 2022-09-20
Manufacturer NVIDIA
Memory Size 16 GB
Memory Type GDDR6X
Memory Bus 256 bit
Memory Clock 1400 MHz
Memory Bandwidth 716.8 GB/s
Base Clock 2205 MHz
Boost Clock 2505 MHz
Shading Units 9728
Ray Tracing Cores 76
TMUs 304
ROPs 112
Pixel Rate 280.6 GPixel/s
Texture Rate 761.5 GTexel/s
Compute Power (FP16) 48.7 TFLOPS
Compute Power (FP32) 48.7 TFLOPS
Compute Power (FP64) 761.5 GFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 1x 16-pin
TDP 320 W
Suggested PSU 800 W
Radeon RX 9070 XT
Full Tech Specs:
Feature Specification
Name Radeon RX 9070 XT
MSRP $599
Release Date 2025-03-06
Chipset Manufacturer AMD
Memory Size 16 GB
Memory Type GDDR6
Memory Bus 256 bit
Memory Clock 2518 MHz
Memory Bandwidth 644.6 GB/s
Base Clock 1660 MHz
Boost Clock 2970 MHz
Shading Units 4096
Ray Tracing Cores 64
TMUs 256
ROPs 128
Pixel Rate 380.2 GPixel/s
Texture Rate 760.3 GTexel/s
Compute Power (FP16) 97.3 TFLOPS
Compute Power (FP32) 48.7 TFLOPS
Compute Power (FP64) 1.5 TFLOPS
Architecture RDNA 4.0
Process Size 4 nm
Interface PCIe 5.0 x16
Power Connectors 2x 8-pin
TDP 304 W
Suggested PSU 800 W

Final Verdict

The Radeon RX 9070 XT represents a massive shift in market positioning by matching the gaming power of high-end hardware for a significantly lower entry cost. It launched at a $599 MSRP which stands in stark contrast to the $1199 launch price of the GeForce RTX 4080 and this gap fundamentally changes how we view performance tiers. While the NVIDIA card relies on a 5 nm Ada Lovelace process, the AMD card utilizes a newer 4 nm RDNA 4 architecture that introduces a PCIe 5.0 interface for better bandwidth headroom. Both cards feature 16GB of VRAM and 256-bit memory buses so they handle modern high-resolution textures with ease.

The GeForce RTX 4080 maintains its presence in professional circles due to the wide adoption of CUDA acceleration and it still performs very well in heavy ray tracing scenarios although that technological lead is harder to defend when you look at the raw price to performance metrics. The Radeon RX 9070 XT offers FSR 4 features and an updated AV1 encoder which levels the playing field for streamers or creators who do not specifically require proprietary NVIDIA software. The power requirements are nearly identical but the AMD card uses more standard power connectors compared to the 16-pin requirement on the RTX 4080. If you are building a new system for pure gaming then the AMD card is simply a more logical way to spend your money without sacrificing any major visual fidelity or speed.

  • Buy GeForce RTX 4080 if you rely on specific CUDA-accelerated professional applications or you must have the absolute highest performance in ray tracing regardless of the $1199 launch price.
  • Buy Radeon RX 9070 XT if you want identical rasterization performance and modern features for the significantly lower $599 MSRP.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.