GeForce RTX 4090 vs GeForce RTX 4070

Winner:
GeForce RTX 4090
Main Difference:
Double the VRAM and significantly higher memory bandwidth for top-tier performance
Page Summary:
GeForce RTX 4090 is fundamentally in another class compared to the 4070, providing double the memory and a massive compute advantage that keeps it relevant for high-end professional work and heavy rendering tasks long after mid-range options face limitations.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 4090

MSRP:
$1,599
See Current Price
Spec Sheet:
Core Count:
16384
Thread Count:
Base Clock:
2235 MHz
Boost Clock:
2520 MHz
Integrated Graphics:
VRAM:
24.0 GB
L3 Cache:
24.0 GB
TDP:
450 W
Socket:
384 bit
Bus Width:
384 bit
Release Date:
2022-09-20
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
95.2
97.7
1440p
88.6
87.1
4K
79.3
79.3
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

GeForce RTX 4070

MSRP:
$549
See Current Price
Spec Sheet:
Core Count:
5888
Thread Count:
Base Clock:
1920 MHz
Boost Clock:
2475 MHz
Integrated Graphics:
VRAM:
12.0 GB
L3 Cache:
12.0 GB
TDP:
200 W
Socket:
192 bit
Bus Width:
192 bit
Release Date:
2023-04-12
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
58.4
54.9
1440p
47.8
42.7
4K
37.2
34.1
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 4090
Gaming Analysis:

This hardware acts as a visual powerhouse for high-resolution gaming, tackling the dense pixel counts of 4K with a level of composure that typically makes 1440p feel like a light workload. While many cards find themselves struggling to maintain fluid motion at 3840 x 2160, this unit stays responsive across nearly any title you load. It serves as the definitive pairing for high-end 4K displays where standard silicon often begins to stutter or drop frames.

The 24 GB of GDDR6X memory provides a massive buffer for texture quality, allowing you to maximize every slider and use high-resolution texture packs without hitting a hardware wall. In modern games that demand heavy memory resources, you avoid the hitching or asset pop-in that can impact cards with 8GB or 12GB capacities. It offers enough headroom to ensure that your experience remains smooth even as upcoming releases push for more VRAM usage.

  • Ray tracing performance is a core strength of the Ada Lovelace architecture, utilizing 128 dedicated cores to process complex lighting and reflections so efficiently that high visual fidelity rarely compromises playability.
  • The 384-bit memory bus sustains a wide data path, which helps prevent the bandwidth limitations that can lead to frame time spikes during intense on-screen action.
  • DLSS 3 frame generation provides a tool to keep movement fluid in massive open-world environments where the simulation might otherwise be limited by CPU throughput.
  • At 1440p, the card has so much performance overhead that it often waits on the rest of the system to catch up before it reaches full utilization.

Engaging heavy features like path tracing in demanding titles does not turn the screen into a slideshow. Where previous generations often struggled with the latency and visual artifacts of these settings, this hardware maintains a sense of immediate response. It is a rare piece of technology that allows you to move past the settings menu and simply focus on the game. To support this tier of hardware alongside a capable processor, a 1000W power supply is recommended for stable operation.

GeForce RTX 4070
Gaming Analysis:

The GeForce RTX 4070 occupies a specialized midrange space where high-resolution performance and power efficiency actually overlap. It handles heavy visuals with a level of restraint that makes older flagships feel unnecessarily loud and hot. While it can reach into higher resolutions, it functions most effectively when pushed at its target mid-tier resolution. Attempting to drive high-refresh displays at native 4K will eventually show the hardware limits, but for anything less demanding, the experience remains responsive.

The 12GB VRAM buffer serves as a reliable middle ground for current titles. It provides a significant margin over lower-tier cards that are beginning to struggle, though it does not offer the bottomless overhead found in enthusiast-class hardware. In titles with heavy texture loads, this GDDR6X capacity allows for high-quality assets without the stuttering or asset pop-in that can disrupt the flow of play. It manages to stay ahead of the curve for now, even if ultra-heavy texture packs in the future might eventually test its limits.

  • Mid-resolution gaming is the sweet spot for this architecture, where it delivers smooth motion across demanding modern libraries.
  • The 46 dedicated Ray Tracing cores make complex lighting and reflections a practical choice rather than a theoretical one.
  • The 192-bit memory bus is balanced for its primary use case, though it can act as a natural ceiling during heavy 4K workloads compared to the Ti variants.
  • DLSS 3 and Frame Generation provide a significant lift when a title feels particularly heavy, using AI to maintain fluidity even in taxing environments.
  • At a launch MSRP of $549, it matches the raw output of previous-generation flagships while pulling significantly less power, helping keep thermal output low during extended sessions.

Ray tracing on this card is a tangible feature rather than a checkbox. It maintains sharp reflections and realistic shadows without forcing a compromise that ruins the experience. Because it utilizes the Ada Lovelace architecture, the fourth-gen Tensor cores can step in with AI reconstruction to keep the image crisp when the path-tracing math gets heavy. It creates a stable balance where you can actually enjoy the lighting effects instead of worrying about the performance cost.

GeForce RTX 4090
Productivity Analysis:

While the hardware is exceptional for high-resolution entertainment, its utility in a professional environment shifts from amusement to a practical reduction of downtime. The transition from rendering frames to processing large datasets or complex 3D scenes relies on the heavy internal overhead provided by the Ada Lovelace architecture. It functions as a workstation-grade tool that happens to fit into a consumer-focused gaming system.

The 24 GB of GDDR6X memory acts as an essential foundation for anyone handling architectural visualization or intricate textures that would overwhelm lesser hardware. When working with professional rendering engines, the capacity to keep a massive scene within the dedicated video memory prevents the significant slowdowns that occur when a system is forced to rely on slower system RAM. This buffer allows for a more continuous creative process where you can keep multiple heavy applications open simultaneously without the interface becoming unresponsive or sluggish during a long edit.

  • The inclusion of dual 8th-generation NVENC encoders with AV1 support means that rendering out high-resolution video projects happens with impressive speed, effectively freeing up the system for other tasks sooner.
  • A massive memory bandwidth of 1010.0 GB/s ensures that data travels quickly enough to keep the playback of raw 8K footage feeling fluid rather than disjointed as you scrub through a timeline.
  • The 16384 cores provide a reliable level of support for CUDA-accelerated applications, which remains a key factor for stability when using industry-standard software for animation or 3D modeling.
  • With 82.6 TFLOPS of FP16 compute performance, the card manages local artificial intelligence workloads and heavy computational tasks with a speed that moves projects toward completion much faster than mid-tier alternatives.

Operating this equipment requires an awareness of its physical and thermal demands within a case. The power requirements are substantial, making a 1000W power supply a necessary part of the build to ensure the system remains stable under the persistent load of a long render. It represents a heavy investment in professional efficiency, where the primary return is the time saved by moving past the technical limitations of your hardware. By removing the friction from the production cycle, you can devote your focus to the quality of the project itself rather than managing the settings of your software.

GeForce RTX 4070
Productivity Analysis:

While the gaming results establish this card as a high-performance choice for entertainment, its utility changes when moving into professional software where stability and memory management take priority. It serves as a reliable link between enthusiast projects and more demanding creative work. The architecture provides access to a stable ecosystem that remains a benchmark for various 3D and video applications. Choosing this hardware ensures a level of software compatibility that can prevent the disruptions often associated with less established drivers, making it a dependable option for anyone who needs their machine to stay functional during long render cycles.

The 12GB VRAM buffer offers substantial space for most high-resolution video timelines and standard 3D textures, though it does represent a definitive boundary. If a project involves extremely high-resolution RAW footage or massive geometric scenes, the system will eventually reach its memory limit. When that occurs, the hardware has to move data back to system memory, which often leads to a noticeable drop in overall responsiveness. The 504.2 GB/s bandwidth keeps many interactions snappy, yet the memory configuration can feel somewhat restrictive during deep archival exports or when working with uncompressed layers that demand massive throughput.

  • The 29.2 TFLOPS of FP32 compute power ensures that viewport interactions in 3D applications remain fluid even as light and shadow calculations become more complex.
  • The eighth-gen NVENC hardware includes AV1 encoding, allowing for high-quality video exports and streams that do not rely on the central processor to handle the heavy lifting.
  • Forty-six dedicated Ray Tracing cores allow for physically accurate lighting previews to happen in real-time within supported creative suites.
  • Power efficiency is a major strength, as it maintains high output while drawing roughly 186 watts, which prevents the workspace from overheating during multi-hour rendering sessions.
  • The 5888 shading units provide the necessary parallel processing to handle intensive tasks like AI-assisted noise reduction or complex image manipulation across large batches of files.

This card functions best as a tool for efficiency within its specific technical guardrails. It lacks the massive overhead found in the highest-tier enthusiast models, so users must be mindful of their project scale to avoid memory bottlenecks. It is built for a professional who needs to transition between a 3D modeling environment and a video editing suite without encountering the stability issues that plague a less focused workstation config. It represents a practical balance where the hardware stays out of the way of the work. If your daily tasks involve massive simulations or high-bitrate 8K projects, the 12GB capacity may eventually require more careful asset management as software evolves.

GeForce RTX 4090
Feature Analysis:

A typical 450W power draw creates a significant thermal reality that demands a serious commitment to case airflow and cooling management. Integrating this much heat density into a standard chassis means you are no longer building a simple desktop but managing a piece of high-performance machinery. While the base specifications suggest an 850W power supply, a 1000W unit is the more stable path to accommodate the sudden power spikes this silicon often produces. This requirement ensures the system remains functional during heavy loads and prevents the abrupt shutdowns that can occur when the hardware pulls maximum current from the rail.

Managing the physical installation involves handling a 16-pin power connector that requires careful routing to maintain a secure and flush connection. The stiffness of the cable and any necessary adapters can create friction in narrower cases where the distance between the card and the side panel is limited. Ensuring a clean, straight seating of the power lead is a vital step for long-term reliability and physical safety. This hardware is physically dominant in size and weight, often requiring a support bracket to prevent the PCB from sagging or putting undue stress on the PCIe slot over time.

  • The PCIe 4.0 x16 interface provides the full available bandwidth of 31.5 GB/s to ensure no data bottlenecks occur between the system and the GPU.
  • A 24 GB VRAM buffer offers vast headroom for high-resolution 4K textures and provides enough capacity to handle complex local AI workloads without the system slowing down.
  • The Ada Lovelace architecture utilizes a 384-bit memory bus to maintain high throughput which keeps frame delivery consistent during visually dense moments.
  • Physical dimensions on many models extend well beyond three slots in width and often exceed 330mm in length, which restricts your choice of compatible mid-tower enclosures.

This is a component that settles into the build as a permanent fixture of your workflow and demands that the rest of the PC matches its tier. Relying on a high-airflow mesh case is essentially mandatory to prevent the internal air temperature from rising to levels that would trigger thermal throttling. If you are willing to solve these power delivery and ventilation challenges before you press the power button, the hardware rewards you with a level of stability that remains unmatched in the consumer market. It is a build choice for those who want to move past the limitations of standard hardware and focus entirely on the output of their machine.

GeForce RTX 4070
Feature Analysis:

A 200W TDP makes this hardware remarkably easy to manage within a standard mid-sized case since it does not generate the massive thermal output seen in higher-tier parts. You can achieve a stable build without investing in an oversized cooling solution or a complex fan configuration because the architecture prioritizes efficiency per watt. This lower power draw directly translates to a quieter workspace during heavy cycles, allowing the card to maintain its clock speeds without pushing the fans to distracting levels. It is a polite component that does not demand you overhaul your entire thermal strategy just to keep it from hitting its temperature ceiling.

The 12GB VRAM buffer sits at a transitional point for high-resolution textures and local AI workloads. While it remains comfortable for standard assets at 1440p, pushing into 4K packs or complex lighting mods may eventually lead to memory pressure that requires minor setting adjustments. This capacity provides enough room for the current gaming landscape, but it lacks the heavy overhead found in flagship models meant to act as a generational anchor for the next several years. You are buying an efficient tool that handles modern requirements with ease, though you must stay mindful of how texture quality settings impact the memory limit as software demands continue to climb.

  • The single 16-pin power connector requires careful Cable management to ensure the plug is fully seated and the cable has a natural curve without being pressed firmly against the side of the chassis.
  • A 650W power supply provides the necessary headroom to handle the sudden power spikes that occur when the silicon shifts from a resting state to a full rendering load.
  • Utilizing a PCIe 4.0 x16 interface ensures that the GPU has access to the full available bandwidth even if you are installing it into a slightly older motherboard platform.
  • The 200W typical power draw keeps the internal case temperature low, which helps prevent other sensitive components like M.2 drives from picking up excess heat.
  • Ada Lovelace architecture optimizations mean this card delivers significant throughput while consuming far less electricity than previous-generation hardware with similar raw performance.

Operating this card is a predictable experience as long as you provide the suggested power headroom and respect the specific memory boundaries of the 12GB buffer. It is a focused workhorse that avoids the heat and power baggage often associated with high-end enthusiast desktop builds. This hardware is the definitive choice for a builder who wants a modern feature set and high efficiency without the need for a massive power supply or a giant enclosure. It delivers a refined experience that stays out of its own way, provided you remain realistic about the texture limits at the highest resolutions.

GeForce RTX 4090
Full Tech Specs:
Feature Specification
Name GeForce RTX 4090
MSRP $1,599
Release Date 2022-09-20
Chipset Manufacturer NVIDIA
Memory Size 24 GB
Memory Type GDDR6X
Memory Bus 384 bit
Memory Clock 1313 MHz
Memory Bandwidth 1010.0 GB/s
Base Clock 2235 MHz
Boost Clock 2520 MHz
Shading Units 16384
Ray Tracing Cores 128
TMUs 512
ROPs 176
Pixel Rate 443.5 GPixel/s
Texture Rate 1290.2 GTexel/s
Compute Power (FP16) 82.6 TFLOPS
Compute Power (FP32) 82.6 TFLOPS
Compute Power (FP64) 1.3 TFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 1x 16-pin
TDP 450 W
Suggested PSU 950 W
GeForce RTX 4070
Full Tech Specs:
Feature Specification
Name GeForce RTX 4070
MSRP $549
Release Date 2023-04-12
Chipset Manufacturer NVIDIA
Memory Size 12 GB
Memory Type GDDR6X
Memory Bus 192 bit
Memory Clock 1313 MHz
Memory Bandwidth 504.2 GB/s
Base Clock 1920 MHz
Boost Clock 2475 MHz
Shading Units 5888
Ray Tracing Cores 46
TMUs 184
ROPs 64
Pixel Rate 158.4 GPixel/s
Texture Rate 455.4 GTexel/s
Compute Power (FP16) 29.2 TFLOPS
Compute Power (FP32) 29.2 TFLOPS
Compute Power (FP64) 455.4 GFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 1x 16-pin
TDP 200 W
Suggested PSU 650 W

Final Verdict

The GeForce RTX 4090 stands as the definitive choice for anyone needing raw power without compromise. While sharing the same architecture as its smaller sibling, the sheer scale of the hardware here creates a massive performance gap. It features 24GB of GDDR6X memory which effectively doubles what you find on the lower tier card. This extra headroom is essential for modern high-resolution textures and complex 3D scenes that would otherwise hit a wall on hardware with tighter memory constraints. The 384-bit bus on this flagship allows data to move much faster than the 192-bit interface found on the mid-range alternative, which helps maintain smooth frame delivery when settings are pushed to their absolute limits.

  • Compute and Memory: The GeForce RTX 4090 offers nearly triple the raw compute throughput compared to the 4070. This makes a night and day difference in rendering heavy video projects or training local machine learning models. The 24GB buffer is not just for show but prevents the slowdowns that occur when a professional workload exceeds available VRAM.
  • Architecture and Power: Both cards utilize the Ada Lovelace design for improved ray tracing and AI frame generation, but the flagship version brings far more RT cores to the table. This results in a much faster experience in path-traced software. You do pay for this with a higher power draw, as the flagship requires a beefy 850W power supply or higher to run reliably under load.
  • MSRP Considerations: There is a significant jump in the launch MSRP between these two products. The GeForce RTX 4090 commands a premium launch MSRP because it targeted the enthusiast and professional markets. Meanwhile, the GeForce RTX 4070 launched at a lower MSRP aimed at high-efficiency builds where power consumption matters more than peak performance output.

Buy GeForce RTX 4090 if you need the absolute best performance for high-resolution rendering, heavy professional workloads, or local AI applications that demand a massive memory buffer. Buy GeForce RTX 4070 if you want excellent power efficiency and solid performance for standard builds where a lower launch MSRP is a priority over extreme compute power.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.