GeForce RTX 4090 vs GeForce RTX 5070 Ti

Winner:
GeForce RTX 5070 Ti
Main Difference:
Modern Blackwell architecture with GDDR7 memory and DLSS 4 support.
Page Summary:
GeForce RTX 5070 Ti is the superior choice for most builders because it offers the latest Blackwell architecture features like DLSS 4 and efficient GDDR7 memory at a much lower $749 MSRP compared to the flagship alternative.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 4090

MSRP:
$1,599
See Current Price
Spec Sheet:
Core Count:
16384
Thread Count:
Base Clock:
2235 MHz
Boost Clock:
2520 MHz
Integrated Graphics:
VRAM:
24.0 GB
L3 Cache:
24.0 GB
TDP:
450 W
Socket:
384 bit
Bus Width:
384 bit
Release Date:
2022-09-20
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
95.2
97.7
1440p
88.6
87.1
4K
79.3
79.3
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

GeForce RTX 5070 Ti

MSRP:
$749
See Current Price
Spec Sheet:
Core Count:
8960
Thread Count:
Base Clock:
2295 MHz
Boost Clock:
2452 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
300 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2025-02-20
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
78.8
85
1440p
70.8
71.7
4K
58.7
62.4
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 4090
Gaming Analysis:

This hardware acts as a visual powerhouse for high-resolution gaming, tackling the dense pixel counts of 4K with a level of composure that typically makes 1440p feel like a light workload. While many cards find themselves struggling to maintain fluid motion at 3840 x 2160, this unit stays responsive across nearly any title you load. It serves as the definitive pairing for high-end 4K displays where standard silicon often begins to stutter or drop frames.

The 24 GB of GDDR6X memory provides a massive buffer for texture quality, allowing you to maximize every slider and use high-resolution texture packs without hitting a hardware wall. In modern games that demand heavy memory resources, you avoid the hitching or asset pop-in that can impact cards with 8GB or 12GB capacities. It offers enough headroom to ensure that your experience remains smooth even as upcoming releases push for more VRAM usage.

  • Ray tracing performance is a core strength of the Ada Lovelace architecture, utilizing 128 dedicated cores to process complex lighting and reflections so efficiently that high visual fidelity rarely compromises playability.
  • The 384-bit memory bus sustains a wide data path, which helps prevent the bandwidth limitations that can lead to frame time spikes during intense on-screen action.
  • DLSS 3 frame generation provides a tool to keep movement fluid in massive open-world environments where the simulation might otherwise be limited by CPU throughput.
  • At 1440p, the card has so much performance overhead that it often waits on the rest of the system to catch up before it reaches full utilization.

Engaging heavy features like path tracing in demanding titles does not turn the screen into a slideshow. Where previous generations often struggled with the latency and visual artifacts of these settings, this hardware maintains a sense of immediate response. It is a rare piece of technology that allows you to move past the settings menu and simply focus on the game. To support this tier of hardware alongside a capable processor, a 1000W power supply is recommended for stable operation.

GeForce RTX 5070 Ti
Gaming Analysis:

The GeForce RTX 5070 Ti acts as a heavyweight for high-resolution gaming, specifically designed to dominate the mid-to-high tier of performance. It handles the native resolution of enthusiast-grade displays with significant overhead, though it transitions into a more calculated role when pushing the extreme pixel counts of the highest resolutions. In those scenarios, the hardware maintains fluidity but relies more on its architectural efficiency rather than raw brute force. It settles into a comfortable rhythm where motion remains smooth and responsive without the sluggishness often found in lower-tier silicon.

The 16GB of GDDR7 memory provides a massive buffer for modern visual demands. You are largely protected from the stuttering and texture pop-in that can occur when a GPU runs out of room for high-quality assets. Modern titles with dense environments require heavy texture loads that can overwhelm cards with smaller capacities, but the 256-bit bus here allows you to push settings toward their maximum without hitting a wall. This VRAM capacity ensures that game worlds stay sharp and detailed throughout long sessions rather than dropping into blurry or low-quality placeholders.

  • Rasterization Performance. This card shows a clear lead over previous-generation mid-range options and stays competitive with older enthusiast-tier flagships in traditional rendering tasks.
  • Ray Tracing Capabilities. The Blackwell architecture handles complex lighting and shadow calculations with composure. Because it features 70 dedicated RT cores, you can enable advanced lighting effects and path tracing while maintaining a stable visual flow that avoids the choppy behavior of less capable hardware.
  • DLSS and Frame Generation. The inclusion of modern upscaling tech is a significant help at the highest resolutions. It allows the card to take a heavy native load and transform it into a fluid experience, which is especially useful when every detail is cranked to the limit.
  • High Resolution Considerations. While it matches elite previous-generation cards in ray tracing, the 256-bit bus width means it is most efficient when paired with upscaling if you intend to play at the highest possible resolutions with all effects active.

The transition to GDDR7 provides a substantial jump in bandwidth over the prior generation, which helps eliminate data bottlenecks and micro-stutter. This is a sophisticated piece of silicon that focuses on a clean and stable image. You are investing in the ability to keep visual features enabled without watching the experience degrade or become unplayable when the action on screen gets intense. If your goal is a 800W power-managed build that stays relevant as game engines become more demanding, this card fits that role well.

GeForce RTX 4090
Productivity Analysis:

While the hardware is exceptional for high-resolution entertainment, its utility in a professional environment shifts from amusement to a practical reduction of downtime. The transition from rendering frames to processing large datasets or complex 3D scenes relies on the heavy internal overhead provided by the Ada Lovelace architecture. It functions as a workstation-grade tool that happens to fit into a consumer-focused gaming system.

The 24 GB of GDDR6X memory acts as an essential foundation for anyone handling architectural visualization or intricate textures that would overwhelm lesser hardware. When working with professional rendering engines, the capacity to keep a massive scene within the dedicated video memory prevents the significant slowdowns that occur when a system is forced to rely on slower system RAM. This buffer allows for a more continuous creative process where you can keep multiple heavy applications open simultaneously without the interface becoming unresponsive or sluggish during a long edit.

  • The inclusion of dual 8th-generation NVENC encoders with AV1 support means that rendering out high-resolution video projects happens with impressive speed, effectively freeing up the system for other tasks sooner.
  • A massive memory bandwidth of 1010.0 GB/s ensures that data travels quickly enough to keep the playback of raw 8K footage feeling fluid rather than disjointed as you scrub through a timeline.
  • The 16384 cores provide a reliable level of support for CUDA-accelerated applications, which remains a key factor for stability when using industry-standard software for animation or 3D modeling.
  • With 82.6 TFLOPS of FP16 compute performance, the card manages local artificial intelligence workloads and heavy computational tasks with a speed that moves projects toward completion much faster than mid-tier alternatives.

Operating this equipment requires an awareness of its physical and thermal demands within a case. The power requirements are substantial, making a 1000W power supply a necessary part of the build to ensure the system remains stable under the persistent load of a long render. It represents a heavy investment in professional efficiency, where the primary return is the time saved by moving past the technical limitations of your hardware. By removing the friction from the production cycle, you can devote your focus to the quality of the project itself rather than managing the settings of your software.

GeForce RTX 5070 Ti
Productivity Analysis:

While this hardware dominates high-resolution gaming, moving into a professional workspace shifts the focus toward reliability and thermal endurance. In a workstation environment, the Blackwell architecture moves from providing entertainment to serving as a tool that handles prolonged rendering loads. The 16GB of GDDR7 memory provides a significant buffer for professional tasks that was often missing in previous mid-tier hardware. If you are working with large texture sets in 3D applications or handling high-resolution video projects, this expanded memory pool helps maintain system stability by providing the necessary space for complex assets to reside without overflowing into slower system memory.

Choosing this hardware also secures access to the CUDA ecosystem, which remains a standard for many industry-standard plugins and rendering engines. This technical foundation means that software updates and professional tools often prioritize stability and performance for this specific architecture. The 896 GB/s memory bandwidth on a 256-bit bus contributes to a responsive experience when navigating complex project timelines. There is a noticeable lack of friction when dragging a playhead across a dense production file, as the hardware keeps pace with your manual inputs rather than forcing a wait for the interface to catch up.

  • Video Processing. Dual ninth-generation encoders provide hardware acceleration for modern codecs like AV1 and high-depth 10-bit formats, which reduces the heavy lifting usually required from the processor.
  • Rendering Efficiency. With 70 dedicated RT cores, the card processes path-tracing calculations significantly faster than its predecessors and allows for more frequent iterations on lighting and materials.
  • Compute Resources. The 43.9 TFLOPS of compute performance drives localized AI tools and denoising features, ensuring these background calculations do not lock up the user interface during heavy use.
  • Data Movement. High memory bandwidth serves as a quiet strength for three-dimensional work, moving massive 8K material files into VRAM quickly enough to prevent the micro-stuttering found on slower memory architectures.

Managing the thermal output of a 300W part is a requirement for maintaining the longevity of the silicon under constant render pressure. When the hardware is engaged in a full production cycle, it generates consistent heat that requires a case with high-volume airflow to prevent the clock speeds from dropping as a safety measure. For a stable build, a high-quality 850W power supply ensures the system has enough headroom to manage power spikes during intense computational bursts. This is a sophisticated component that prioritizes the ability to leave a project running through the night and find it completed without errors in the morning. It handles heavy lifting with a level of competence that justifies its position as a serious production tool for those who rely on their hardware for consistent results.

GeForce RTX 4090
Feature Analysis:

A typical 450W power draw creates a significant thermal reality that demands a serious commitment to case airflow and cooling management. Integrating this much heat density into a standard chassis means you are no longer building a simple desktop but managing a piece of high-performance machinery. While the base specifications suggest an 850W power supply, a 1000W unit is the more stable path to accommodate the sudden power spikes this silicon often produces. This requirement ensures the system remains functional during heavy loads and prevents the abrupt shutdowns that can occur when the hardware pulls maximum current from the rail.

Managing the physical installation involves handling a 16-pin power connector that requires careful routing to maintain a secure and flush connection. The stiffness of the cable and any necessary adapters can create friction in narrower cases where the distance between the card and the side panel is limited. Ensuring a clean, straight seating of the power lead is a vital step for long-term reliability and physical safety. This hardware is physically dominant in size and weight, often requiring a support bracket to prevent the PCB from sagging or putting undue stress on the PCIe slot over time.

  • The PCIe 4.0 x16 interface provides the full available bandwidth of 31.5 GB/s to ensure no data bottlenecks occur between the system and the GPU.
  • A 24 GB VRAM buffer offers vast headroom for high-resolution 4K textures and provides enough capacity to handle complex local AI workloads without the system slowing down.
  • The Ada Lovelace architecture utilizes a 384-bit memory bus to maintain high throughput which keeps frame delivery consistent during visually dense moments.
  • Physical dimensions on many models extend well beyond three slots in width and often exceed 330mm in length, which restricts your choice of compatible mid-tower enclosures.

This is a component that settles into the build as a permanent fixture of your workflow and demands that the rest of the PC matches its tier. Relying on a high-airflow mesh case is essentially mandatory to prevent the internal air temperature from rising to levels that would trigger thermal throttling. If you are willing to solve these power delivery and ventilation challenges before you press the power button, the hardware rewards you with a level of stability that remains unmatched in the consumer market. It is a build choice for those who want to move past the limitations of standard hardware and focus entirely on the output of their machine.

GeForce RTX 5070 Ti
Feature Analysis:

Managing the 300W thermal output of the GeForce RTX 5070 Ti constitutes the primary build challenge for any mid-to-high tier enclosure. This Blackwell silicon generates concentrated heat that requires a case with high-volume airflow and multiple intake fans to prevent the hardware from dialing back its clocks during heavy use. While the base minimum power specification sits at 700W, a high-quality 800W power supply provides the necessary electrical buffer to handle sudden spikes in demand without triggering a system shutdown or causing long-term component fatigue. The card utilizes a single 16-pin power connector, which requires a firm and fully seated connection to ensure stable power delivery and long-term reliability across various load cycles.

The 16GB of GDDR7 memory acts as a safety net against the texture-heavy demands of modern high-resolution gaming and professional creative suites. Having this capacity on a 256-bit bus prevents the visual hitches and asset pop-in that can occur when a GPU is forced to cycle data out of its local buffer. Because the card supports the PCIe 5.0 x16 interface, it communicates at the highest possible speeds with modern motherboards, though it maintains full compatibility with older hardware generations. You are investing in a sophisticated hardware environment that demands quality power and cooling to maintain its performance floor over years of use.

  • The 300W typical power draw exerts significant pressure on internal case temperatures and requires a thoughtful fan curve.
  • A 16GB memory buffer ensures the card remains comfortable at high resolutions where smaller 12GB capacities might require compromises.
  • Native PCIe 5.0 x16 support provides a wide lane for data movement on the latest platform architectures.
  • The MSRP of $749 positions this hardware as a serious investment for those who prioritize architectural efficiency over budget-tier alternatives.
  • Transitioning to the 16-pin power standard simplifies cable management in modern ATX 3.1 builds but requires careful clearance for the cable bend.

A build featuring this hardware succeeds when the environment matches the sophistication of the silicon. It is not a component for cramped cases with poor ventilation because of the thermal requirements of the Blackwell architecture. Once you have resolved the airflow and power supply requirements, the card operates with a level of stability that allows you to focus on the task at hand rather than troubleshooting hardware limits. It represents a modern approach to power-dense computing where the quality of your cooling solution directly influences the consistency of your experience.

GeForce RTX 4090
Full Tech Specs:
Feature Specification
Name GeForce RTX 4090
MSRP $1,599
Release Date 2022-09-20
Chipset Manufacturer NVIDIA
Memory Size 24 GB
Memory Type GDDR6X
Memory Bus 384 bit
Memory Clock 1313 MHz
Memory Bandwidth 1010.0 GB/s
Base Clock 2235 MHz
Boost Clock 2520 MHz
Shading Units 16384
Ray Tracing Cores 128
TMUs 512
ROPs 176
Pixel Rate 443.5 GPixel/s
Texture Rate 1290.2 GTexel/s
Compute Power (FP16) 82.6 TFLOPS
Compute Power (FP32) 82.6 TFLOPS
Compute Power (FP64) 1.3 TFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 1x 16-pin
TDP 450 W
Suggested PSU 950 W
GeForce RTX 5070 Ti
Full Tech Specs:
Feature Specification
GPU Model GeForce RTX 5070 Ti
MSRP $749
Release Date 2025-02-20
Chipset Manufacturer NVIDIA
Memory Size 16 GB
Memory Type GDDR7
Memory Bus 256 bit
Memory Clock 1750 MHz
Memory Bandwidth 896.0 GB/s
Base Clock 2295 MHz
Boost Clock 2452 MHz
Shading Units 8960
Ray Tracing Cores 70
TMUs 280
ROPs 96
Pixel Rate 235.4 GPixel/s
Texture Rate 686.6 GTexel/s
Compute Power (FP16) 43.9 TFLOPS
Compute Power (FP32) 43.9 TFLOPS
Compute Power (FP64) 686.6 GFLOPS
Architecture Blackwell 2.0
Process Size 5 nm
Interface PCIe 5.0 x16
Power Connectors 1x 16-pin
TDP 300 W
Suggested PSU 800 W

Final Verdict

The GeForce RTX 5070 Ti represents a massive shift in value for the average high-end builder. While the GeForce RTX 4090 was the undisputed king of the previous generation, its massive $1599 MSRP and high power requirements make it a difficult sell for anyone who is not doing heavy professional work. The newer Blackwell-based card introduces GDDR7 memory which provides high bandwidth even with a narrower bus. This architectural leap allows the hardware to maintain impressive speeds without the brute-force power consumption seen in older flagship designs. Owners of the newer card also gain access to DLSS 4 technologies that are not available on the older Ada Lovelace parts.

Building around the newer card is also much simpler for the average user. It requires a 700W power supply rather than the massive 850W or 1000W units often paired with the flagship. This means less heat in your case and less stress on your electricity bill while still getting a premium experience. The inclusion of PCIe 5.0 support ensures that the hardware remains compatible with the fastest upcoming motherboard standards and storage solutions. The older flagship still has a lead in raw compute tasks and heavy 4K workloads where its 24GB of VRAM and massive core count are beneficial, but for the vast majority of gaming scenarios and creative projects, the 16GB of video memory on the newer model is plenty.

  • Buy GeForce RTX 4090 if you absolutely must have 24GB of VRAM for heavy 3D rendering or professional AI workloads and have a budget that can scale to the $1599 MSRP.
  • Buy GeForce RTX 5070 Ti if you want a modern Blackwell card with DLSS 4 support and great efficiency for a much more reasonable $749 MSRP.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.