GeForce RTX 4090 vs Intel Arc A580

Winner:
GeForce RTX 4090
Main Difference:
Unmatched memory capacity and bandwidth for enthusiasts versus basic budget hardware capability.
Page Summary:
GeForce RTX 4090 is the clear choice for demanding users because it offers roughly triple the standard gaming performance and more than quadruple the ray tracing capability compared to the Intel Arc A580.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 4090

MSRP:
$1,599
See Current Price
Spec Sheet:
Core Count:
16384
Thread Count:
Base Clock:
2235 MHz
Boost Clock:
2520 MHz
Integrated Graphics:
VRAM:
24.0 GB
L3 Cache:
24.0 GB
TDP:
450 W
Socket:
384 bit
Bus Width:
384 bit
Release Date:
2022-09-20
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
95.2
97.7
1440p
88.6
87.1
4K
79.3
79.3
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Intel Arc A580

MSRP:
$179
See Current Price
Spec Sheet:
Core Count:
3072
Thread Count:
Base Clock:
1700 MHz
Boost Clock:
2000 MHz
Integrated Graphics:
VRAM:
8.0 GB
L3 Cache:
8.0 GB
TDP:
175 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2023-10-10
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
24.2
24
1440p
19.5
16.2
4K
15.4
10.6
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 4090
Gaming Analysis:

This hardware acts as a visual powerhouse for high-resolution gaming, tackling the dense pixel counts of 4K with a level of composure that typically makes 1440p feel like a light workload. While many cards find themselves struggling to maintain fluid motion at 3840 x 2160, this unit stays responsive across nearly any title you load. It serves as the definitive pairing for high-end 4K displays where standard silicon often begins to stutter or drop frames.

The 24 GB of GDDR6X memory provides a massive buffer for texture quality, allowing you to maximize every slider and use high-resolution texture packs without hitting a hardware wall. In modern games that demand heavy memory resources, you avoid the hitching or asset pop-in that can impact cards with 8GB or 12GB capacities. It offers enough headroom to ensure that your experience remains smooth even as upcoming releases push for more VRAM usage.

  • Ray tracing performance is a core strength of the Ada Lovelace architecture, utilizing 128 dedicated cores to process complex lighting and reflections so efficiently that high visual fidelity rarely compromises playability.
  • The 384-bit memory bus sustains a wide data path, which helps prevent the bandwidth limitations that can lead to frame time spikes during intense on-screen action.
  • DLSS 3 frame generation provides a tool to keep movement fluid in massive open-world environments where the simulation might otherwise be limited by CPU throughput.
  • At 1440p, the card has so much performance overhead that it often waits on the rest of the system to catch up before it reaches full utilization.

Engaging heavy features like path tracing in demanding titles does not turn the screen into a slideshow. Where previous generations often struggled with the latency and visual artifacts of these settings, this hardware maintains a sense of immediate response. It is a rare piece of technology that allows you to move past the settings menu and simply focus on the game. To support this tier of hardware alongside a capable processor, a 1000W power supply is recommended for stable operation.

Intel Arc A580
Gaming Analysis:

The Intel Arc A580 is a 1080p gaming card that serves as a competent entry point for budget builds but lacks the raw muscle to maintain fluidity at higher resolutions. While it sits on a fast 256-bit memory bus that helps it stay responsive, the Xe-HPG silicon is tuned for standard high-definition monitors. If you try to push this card to run 1440p on modern titles, you will likely encounter chugging frame rates and a loss of responsive snap during fast motion. It is a solid choice for the 1080p gamer who wants high frame rates in esports titles, but it finds its limit when you step into heavier open-world environments.

With 8GB of GDDR6 VRAM, your texture budget requires careful management because that amount is becoming the floor for modern software. You can expect crisp visuals on High settings in older titles, but in newer games, you will likely need to drop textures to Medium to avoid stuttering or sudden hitches when you turn a corner in-game. The card has the bandwidth to move data quickly across its wide bus, but the memory capacity is not deep enough for the massive uncompressed texture packs common in current releases.

  • The standard rasterization performance at 1080p is its strongest suit, delivering smooth movement in Vulkan-based games where the Intel drivers are most mature.
  • Ray tracing performance is surprisingly competent for a budget card, holding its ground well thanks to 24 dedicated Ray Tracing units.
  • Using Ray Tracing at 1080p is viable if you pair it with XeSS upscaling, which helps clean up the image and recover performance lost to complex lighting calculations.
  • At 1440p, the performance drops off significantly, particularly in DirectX titles where the driver overhead still causes inconsistent frame times.
  • While the card handles reflections and shadows better than many rivals in its class, it enters slide-show territory when pushed to 4K resolutions.

You must keep the power draw in mind because this card is remarkably thirsty for the level of performance it provides. It pulls over 200W during intense gaming sessions, which is significantly more heat and electricity than some competing cards. This means your case will get warmer and your fans will likely spin louder than they would with a more efficient rival. To support this card and a standard system, a 550W power supply is a sensible minimum. It is a capable, gritty performer for the 1080p enthusiast, but the high power draw and 8GB VRAM limit mean it is a tool for the present rather than a long-term investment. Given its launch MSRP of $179, it offers a specific path into modern features for those who do not mind the trade-off in efficiency.

GeForce RTX 4090
Productivity Analysis:

While the hardware is exceptional for high-resolution entertainment, its utility in a professional environment shifts from amusement to a practical reduction of downtime. The transition from rendering frames to processing large datasets or complex 3D scenes relies on the heavy internal overhead provided by the Ada Lovelace architecture. It functions as a workstation-grade tool that happens to fit into a consumer-focused gaming system.

The 24 GB of GDDR6X memory acts as an essential foundation for anyone handling architectural visualization or intricate textures that would overwhelm lesser hardware. When working with professional rendering engines, the capacity to keep a massive scene within the dedicated video memory prevents the significant slowdowns that occur when a system is forced to rely on slower system RAM. This buffer allows for a more continuous creative process where you can keep multiple heavy applications open simultaneously without the interface becoming unresponsive or sluggish during a long edit.

  • The inclusion of dual 8th-generation NVENC encoders with AV1 support means that rendering out high-resolution video projects happens with impressive speed, effectively freeing up the system for other tasks sooner.
  • A massive memory bandwidth of 1010.0 GB/s ensures that data travels quickly enough to keep the playback of raw 8K footage feeling fluid rather than disjointed as you scrub through a timeline.
  • The 16384 cores provide a reliable level of support for CUDA-accelerated applications, which remains a key factor for stability when using industry-standard software for animation or 3D modeling.
  • With 82.6 TFLOPS of FP16 compute performance, the card manages local artificial intelligence workloads and heavy computational tasks with a speed that moves projects toward completion much faster than mid-tier alternatives.

Operating this equipment requires an awareness of its physical and thermal demands within a case. The power requirements are substantial, making a 1000W power supply a necessary part of the build to ensure the system remains stable under the persistent load of a long render. It represents a heavy investment in professional efficiency, where the primary return is the time saved by moving past the technical limitations of your hardware. By removing the friction from the production cycle, you can devote your focus to the quality of the project itself rather than managing the settings of your software.

Intel Arc A580
Productivity Analysis:

While the gaming side of the Intel Arc A580 is defined by 1080p stability, shifting to a creative timeline introduces a different set of physical demands on the Xe-HPG architecture. Moving from short bursts of activity into a workstation role requires looking at how the silicon handles sustained data throughput during a long render or a complex 3D export. The high power draw mentioned previously carries over into productivity tasks, where the card pulls significant wattage that produces noticeable heat. You will likely hear the cooling fans working hard to keep temperatures under control when you are grinding through a project. It is a loud, functional experience that reminds you this hardware was built for raw capability rather than thermal silence.

The 8.0 GB VRAM buffer behaves as a hard border for your creative projects. If you are working on standard high-definition video projects or basic 4K cuts, the card feels responsive and manages the assets without much friction. The moment you start stacking heavy color grades or noise reduction, you might encounter significant system hitching because that memory capacity is the floor for modern professional software. However, the 256-bit memory bus provides a genuine advantage many budget contenders lack. With 512.0 GB/s of bandwidth, scrubbing through the footage you can fit into memory feels strikingly snappy. It avoids the sticky lag often found on cards with narrower interfaces and moves data with the confidence of a much heavier component.

  • The hardware media engine is a primary reason to consider this card for a work build, as it offers full AV1 encoding and decoding features that are often missing from older budget hardware.
  • Intel QuickSync allows a compatible processor and this discrete card to share the workload during exports, though you must occasionally manage driver updates to ensure professional software recognizes the hardware correctly.
  • The 24 Ray Tracing cores are surprisingly functional for 3D modeling in viewport environments, holding their ground well when handling light and shadow calculations.
  • With 24.6 TFLOPS of FP16 performance, the card can serve as a budget entry point for local AI tasks or neural filters that do not exceed the onboard memory capacity.
  • Scientific simulations needing specialized precision are not the focus here, as the hardware is clearly tuned for creative media and visual tasks rather than high-level research.

Choosing this hardware for a professional environment means accepting a specific kind of ecosystem friction. You are forgoing the longstanding stability of established competitors, so you must be comfortable with the occasional driver hiccup or the need to check compatibility before updating your software. If your income depends on hitting a strict deadline every few hours, the occasional instability might be an issue. For a freelance editor on a budget or a student who needs powerful hardware encoding for video projects, the Arc A580 is a calculated choice. It provides professional-grade video tools in a package that requires a steady hand to manage the high power consumption and evolving driver landscape. Given its launch MSRP of $179, it represents a specific path into advanced media features for those who prioritize bandwidth over a larger memory pool.

GeForce RTX 4090
Feature Analysis:

A typical 450W power draw creates a significant thermal reality that demands a serious commitment to case airflow and cooling management. Integrating this much heat density into a standard chassis means you are no longer building a simple desktop but managing a piece of high-performance machinery. While the base specifications suggest an 850W power supply, a 1000W unit is the more stable path to accommodate the sudden power spikes this silicon often produces. This requirement ensures the system remains functional during heavy loads and prevents the abrupt shutdowns that can occur when the hardware pulls maximum current from the rail.

Managing the physical installation involves handling a 16-pin power connector that requires careful routing to maintain a secure and flush connection. The stiffness of the cable and any necessary adapters can create friction in narrower cases where the distance between the card and the side panel is limited. Ensuring a clean, straight seating of the power lead is a vital step for long-term reliability and physical safety. This hardware is physically dominant in size and weight, often requiring a support bracket to prevent the PCB from sagging or putting undue stress on the PCIe slot over time.

  • The PCIe 4.0 x16 interface provides the full available bandwidth of 31.5 GB/s to ensure no data bottlenecks occur between the system and the GPU.
  • A 24 GB VRAM buffer offers vast headroom for high-resolution 4K textures and provides enough capacity to handle complex local AI workloads without the system slowing down.
  • The Ada Lovelace architecture utilizes a 384-bit memory bus to maintain high throughput which keeps frame delivery consistent during visually dense moments.
  • Physical dimensions on many models extend well beyond three slots in width and often exceed 330mm in length, which restricts your choice of compatible mid-tower enclosures.

This is a component that settles into the build as a permanent fixture of your workflow and demands that the rest of the PC matches its tier. Relying on a high-airflow mesh case is essentially mandatory to prevent the internal air temperature from rising to levels that would trigger thermal throttling. If you are willing to solve these power delivery and ventilation challenges before you press the power button, the hardware rewards you with a level of stability that remains unmatched in the consumer market. It is a build choice for those who want to move past the limitations of standard hardware and focus entirely on the output of their machine.

Intel Arc A580
Feature Analysis:

A typical 175W TDP rating suggests a mid-range thermal profile, but the physical reality of the Xe-HPG architecture is that it pushes considerable heat into your chassis during sustained use. This power demand is high for an entry-level part, meaning your case airflow needs to be active rather than passive to prevent the ambient temperature from climbing. While the official minimum specification suggests a 450W power supply, a 550W unit is the safer choice to handle the power spikes common with these Alchemist chips. Using a power supply with a bit more breathing room ensures the system remains stable when the hardware is under full load.

The 8.0 GB VRAM capacity serves as a strict boundary for your visual settings, acting as a ceiling that stays relevant throughout the life of the build. In modern titles, this amount of memory is the baseline, often requiring you to stay at 1080p and avoid the highest texture presets to maintain a smooth experience. The 256-bit bus helps move data with significant speed, yet the physical capacity is shallow enough that 1440p textures can quickly lead to stuttering. It is a build designed for the standard high-definition era, requiring a user who is comfortable managing settings rather than set-and-forget high-resolution gaming.

  • The card utilizes two standard 8-pin power connectors, which avoids the need for specialized adapters and ensures compatibility with traditional power supply cables.
  • A full PCIe 4.0 x16 interface provides the maximum available bandwidth, ensuring the card does not suffer from the performance penalties sometimes found on budget hardware with fewer lanes.
  • The hardware is built on the Xe-HPG architecture, which introduced dedicated silicon for complex tasks like ray tracing and AI-enhanced upscaling.
  • Integrating this hardware into your build requires a motherboard that supports Resizable BAR, as the architecture relies heavily on this feature to function at its intended speed.
  • Early software hurdles have largely been addressed through consistent updates, though the platform still requires a more hands-on approach to driver management than established rivals.

Building with the Arc A580 means accepting a specific kind of technical friction in exchange for its unique feature set. You are choosing a path that prioritizes raw bandwidth and modern architecture over the polished, plug-and-play nature of more expensive ecosystems. Because it draws a notable amount of electricity for its performance class, the noise and heat from your cooling fans will be a constant presence during heavy sessions. It serves as a gritty, capable entry point into modern computing for those who understand that the 8.0 GB limit and the thermal output are the primary trade-offs for its launch MSRP of $179.

GeForce RTX 4090
Full Tech Specs:
Feature Specification
Name GeForce RTX 4090
MSRP $1,599
Release Date 2022-09-20
Chipset Manufacturer NVIDIA
Memory Size 24 GB
Memory Type GDDR6X
Memory Bus 384 bit
Memory Clock 1313 MHz
Memory Bandwidth 1010.0 GB/s
Base Clock 2235 MHz
Boost Clock 2520 MHz
Shading Units 16384
Ray Tracing Cores 128
TMUs 512
ROPs 176
Pixel Rate 443.5 GPixel/s
Texture Rate 1290.2 GTexel/s
Compute Power (FP16) 82.6 TFLOPS
Compute Power (FP32) 82.6 TFLOPS
Compute Power (FP64) 1.3 TFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 1x 16-pin
TDP 450 W
Suggested PSU 950 W
Intel Arc A580
Full Tech Specs:
Feature Specification
Name Intel Arc A580
MSRP $179
Release Date 2023-10-10
Chipset Manufacturer Intel
Memory Size 8 GB
Memory Type GDDR6
Memory Bus 256 bit
Memory Clock 2000 MHz
Memory Bandwidth 512.0 GB/s
Base Clock 1700 MHz
Boost Clock 2000 MHz
Shading Units 3072
Ray Tracing Cores 24
TMUs 192
ROPs 96
Pixel Rate 192 GPixel/s
Texture Rate 384 GTexel/s
Compute Power (FP16) 24.6 TFLOPS
Compute Power (FP32) 12.3 TFLOPS
Compute Power (FP64) 1.5 TFLOPS
Architecture Xe-HPG
Process Size 6 nm
Interface PCIe 4.0 x16
Power Connectors 2x 8-pin
TDP 175 W
Suggested PSU 550 W

Final Verdict

The GeForce RTX 4090 sits in a completely different class than the Intel Arc A580. Built on the Ada Lovelace architecture, NVIDIA's flagship utilizes a massive 24GB pool of GDDR6X memory and a 384-bit bus. These specs allow it to handle complex textures and heavy rendering tasks without slowing down. In comparison, the Intel Arc A580 features the Alchemist architecture with 8GB of GDDR6 memory. This creates a significant gap in bandwidth and raw processing power that affects every modern application. Based on technical data, the GeForce RTX 4090 is roughly 354% faster in standard gaming and over 430% faster in ray tracing scenarios. This advantage comes from having more than five times the shading units and significantly more specialized hardware for lighting calculations. Professionals working with 3D scenes or high-resolution video will find the 24GB buffer indispensable for avoiding crashes and slowdowns during heavy exports. The Intel card serves as a entry-level option, but it lacks the hardware resources to compete in high-end environments. Reliability is also a factor, as NVIDIA has decades of driver development that ensure stability across a vast library of software. Using the GeForce RTX 4090 requires a much more substantial power supply, but the trade-off is a massive jump in capability across every single metric.

  • Performance Scaling: The GeForce RTX 4090 maintains a clear lead by offering approximately 354% higher performance in standard rasterization and over 430% better results in ray tracing compared to the Intel Arc A580.
  • Memory and Latency: With 24GB of high-speed memory, the NVIDIA card avoids the bottlenecks that the 8GB buffer on the Intel card faces when loading high-resolution assets.
  • Architectural Efficiency: The 5nm process of the Ada Lovelace design provides superior efficiency for professionals even though the total power draw is higher than the 6nm Intel part.
  • Recommendation: Buy GeForce RTX 4090 if you need high-performance gaming, professional content creation, or local AI tasks. Buy Intel Arc A580 if you are looking for a basic entry-level solution for simple gaming and have a limited budget at its $179 MSRP.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.