GeForce RTX 4090 vs Radeon RX 7900 GRE

Winner:
GeForce RTX 4090
Main Difference:
GeForce RTX 4090 offers massive VRAM and significantly higher ray tracing throughput.
Page Summary:
GeForce RTX 4090 wins by providing nearly double the raw compute power and a massive lead in professional workloads compared to the more efficient and compact Radeon RX 7900 GRE.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 4090

MSRP:
$1,599
See Current Price
Spec Sheet:
Core Count:
16384
Thread Count:
Base Clock:
2235 MHz
Boost Clock:
2520 MHz
Integrated Graphics:
VRAM:
24.0 GB
L3 Cache:
24.0 GB
TDP:
450 W
Socket:
384 bit
Bus Width:
384 bit
Release Date:
2022-09-20
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
95.2
97.7
1440p
88.6
87.1
4K
79.3
79.3
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Radeon RX 7900 GRE

MSRP:
$549
See Current Price
Spec Sheet:
Core Count:
5120
Thread Count:
Base Clock:
1287 MHz
Boost Clock:
2245 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
260 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2023-07-27
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
62.5
51.5
1440p
54.2
40.4
4K
43.1
32.5
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 4090
Gaming Analysis:

This hardware acts as a visual powerhouse for high-resolution gaming, tackling the dense pixel counts of 4K with a level of composure that typically makes 1440p feel like a light workload. While many cards find themselves struggling to maintain fluid motion at 3840 x 2160, this unit stays responsive across nearly any title you load. It serves as the definitive pairing for high-end 4K displays where standard silicon often begins to stutter or drop frames.

The 24 GB of GDDR6X memory provides a massive buffer for texture quality, allowing you to maximize every slider and use high-resolution texture packs without hitting a hardware wall. In modern games that demand heavy memory resources, you avoid the hitching or asset pop-in that can impact cards with 8GB or 12GB capacities. It offers enough headroom to ensure that your experience remains smooth even as upcoming releases push for more VRAM usage.

  • Ray tracing performance is a core strength of the Ada Lovelace architecture, utilizing 128 dedicated cores to process complex lighting and reflections so efficiently that high visual fidelity rarely compromises playability.
  • The 384-bit memory bus sustains a wide data path, which helps prevent the bandwidth limitations that can lead to frame time spikes during intense on-screen action.
  • DLSS 3 frame generation provides a tool to keep movement fluid in massive open-world environments where the simulation might otherwise be limited by CPU throughput.
  • At 1440p, the card has so much performance overhead that it often waits on the rest of the system to catch up before it reaches full utilization.

Engaging heavy features like path tracing in demanding titles does not turn the screen into a slideshow. Where previous generations often struggled with the latency and visual artifacts of these settings, this hardware maintains a sense of immediate response. It is a rare piece of technology that allows you to move past the settings menu and simply focus on the game. To support this tier of hardware alongside a capable processor, a 1000W power supply is recommended for stable operation.

Radeon RX 7900 GRE
Gaming Analysis:

The Radeon RX 7900 GRE is a high-performance contender that fits into the upper-tier of gaming hardware, offering a massive leap over entry-level parts. Built on the RDNA 3.0 architecture, it provides enough raw power to handle extremely high visual settings at 1440p and can stretch into higher resolutions if you manage your expectations regarding total frame output. It behaves as a balanced middle ground in the lineup, delivering smooth motion in standard gaming without the heat or power demands found in the heaviest flagship silicon.

The 16GB GDDR6 memory buffer is a practical advantage for modern gaming. Many modern titles are increasingly hungry for video memory, and this 16GB ceiling allows you to keep texture quality at maximum without the stuttering or blurry asset loading that can happen on cards with less capacity. This buffer provides significant longevity against the demanding requirements of visual-heavy console ports and complex open-world environments.

  • Standard Gaming (Rasterization): This is where the card is most comfortable. It produces fluid movement across almost any modern title at 1440p. While it can handle 4K, the 256-bit memory bus means performance might tighten in extremely dense scenes compared to larger enthusiast cards.
  • Ray Tracing Performance: With 80 Ray Accelerators, the hardware can handle ray-traced lighting effects, though it remains more demanding than standard rendering. In titles with lighter ray tracing implementations, the visuals remain sharp and playable, but for heavy lighting loads, you will likely need to engage upscaling tools to maintain a steady feel.
  • Upscaling and Frame Generation: You have access to FSR 3 and driver-level Fluid Motion Frames. These features are great for bridging the gap during heavy 4K workloads or when you want the highest possible visual fluidity in fast-paced titles.
  • Memory Tuning: One interesting trait of this card is the ability to adjust memory timings through software. For those comfortable with basic tuning, there is room to tighten up performance and gain a small edge in responsiveness.

The 750W power supply recommendation ensures the card has plenty of headroom for its 2245 MHz boost clock during intense gaming sessions. It is a sensible choice for a build centered on high fidelity and a generous memory overhead, offering a path to enthusiast-level gaming without demanding a specialized high-wattage power environment or a massive chassis. At a launch MSRP of $549, it represents a sturdy investment for high-refresh 1440p setups.

GeForce RTX 4090
Productivity Analysis:

While the hardware is exceptional for high-resolution entertainment, its utility in a professional environment shifts from amusement to a practical reduction of downtime. The transition from rendering frames to processing large datasets or complex 3D scenes relies on the heavy internal overhead provided by the Ada Lovelace architecture. It functions as a workstation-grade tool that happens to fit into a consumer-focused gaming system.

The 24 GB of GDDR6X memory acts as an essential foundation for anyone handling architectural visualization or intricate textures that would overwhelm lesser hardware. When working with professional rendering engines, the capacity to keep a massive scene within the dedicated video memory prevents the significant slowdowns that occur when a system is forced to rely on slower system RAM. This buffer allows for a more continuous creative process where you can keep multiple heavy applications open simultaneously without the interface becoming unresponsive or sluggish during a long edit.

  • The inclusion of dual 8th-generation NVENC encoders with AV1 support means that rendering out high-resolution video projects happens with impressive speed, effectively freeing up the system for other tasks sooner.
  • A massive memory bandwidth of 1010.0 GB/s ensures that data travels quickly enough to keep the playback of raw 8K footage feeling fluid rather than disjointed as you scrub through a timeline.
  • The 16384 cores provide a reliable level of support for CUDA-accelerated applications, which remains a key factor for stability when using industry-standard software for animation or 3D modeling.
  • With 82.6 TFLOPS of FP16 compute performance, the card manages local artificial intelligence workloads and heavy computational tasks with a speed that moves projects toward completion much faster than mid-tier alternatives.

Operating this equipment requires an awareness of its physical and thermal demands within a case. The power requirements are substantial, making a 1000W power supply a necessary part of the build to ensure the system remains stable under the persistent load of a long render. It represents a heavy investment in professional efficiency, where the primary return is the time saved by moving past the technical limitations of your hardware. By removing the friction from the production cycle, you can devote your focus to the quality of the project itself rather than managing the settings of your software.

Radeon RX 7900 GRE
Productivity Analysis:

While the hardware is designed to excel in high resolution gaming, its utility for professional tasks is defined by the heavy compute resources packed into its 80 processing units. Moving from gaming to creative work reveals a card that handles dense 3D viewports and complex timelines with steady composure. The RDNA 3.0 architecture provides a massive amount of raw mathematical power that helps maintain responsiveness in specialized software when you are manipulating heavy assets or managing a multi-monitor productivity setup.

The 16GB memory buffer serves as a critical safety net for anyone working with high-resolution textures or multi-layered video projects. Cards with smaller capacities might struggle the moment you load a secondary application or a large data set, but this overhead ensures the system does not immediately stall during an export or a heavy render. Having this much video memory creates a stable foundation for professional workflows that will remain relevant as software requirements continue to climb in the coming years.

  • Rendering and Simulation Performance: The 80 Ray Accelerators assist in hardware-accelerated rendering tasks within applications like Blender, though the specific software translation layer involves different optimization paths than competitors. While it provides excellent speed for traditional rendering, it relies on raw compute strength to power through complicated lighting calculations.
  • Memory Throughput and Bandwidth: With a 256-bit memory bus providing 576 GB/s of bandwidth, the card handles large data transfers with considerable speed. This allows for smooth scrubbing in video editing software where the GPU must quickly fetch and process frames from the buffer to keep up with your editing pace.
  • Precision Compute Tasks: The hardware offers 92 TFLOPS of FP16 performance, which is a major benefit for AI-assisted tools and image processing filters. This raw arithmetic capability allows the card to accelerate modern neural filters and generative tools even without specialized proprietary cores.
  • Modern Video Encoding: Inclusion of hardware AV1 encoding is a significant perk for video professionals and streamers alike. This allows you to produce high-quality exports with efficient file sizes, reducing the strain on your processor and speeding up the final delivery phase of a project.
  • Technical Software Compatibility: In certain engineering and CAD applications like SolidWorks, the architecture often demonstrates a surprising lead in visualization fluidity. It handles the specific viewport instructions of these tools more effectively than many consumer-grade alternatives, making it a viable choice for a dual-purpose workstation and gaming machine.

A 750W power supply is the recommended choice to provide enough energy for the card during heavy sustained workloads. Despite the massive compute potential, it operates efficiently without creating an overwhelming heat signature or excessive noise levels. At its launch MSRP of $549, it stands as a practical option for builders who need a high-end memory buffer and significant processing power for creative tasks without venturing into the extreme price tiers of flagship workstations.

GeForce RTX 4090
Feature Analysis:

A typical 450W power draw creates a significant thermal reality that demands a serious commitment to case airflow and cooling management. Integrating this much heat density into a standard chassis means you are no longer building a simple desktop but managing a piece of high-performance machinery. While the base specifications suggest an 850W power supply, a 1000W unit is the more stable path to accommodate the sudden power spikes this silicon often produces. This requirement ensures the system remains functional during heavy loads and prevents the abrupt shutdowns that can occur when the hardware pulls maximum current from the rail.

Managing the physical installation involves handling a 16-pin power connector that requires careful routing to maintain a secure and flush connection. The stiffness of the cable and any necessary adapters can create friction in narrower cases where the distance between the card and the side panel is limited. Ensuring a clean, straight seating of the power lead is a vital step for long-term reliability and physical safety. This hardware is physically dominant in size and weight, often requiring a support bracket to prevent the PCB from sagging or putting undue stress on the PCIe slot over time.

  • The PCIe 4.0 x16 interface provides the full available bandwidth of 31.5 GB/s to ensure no data bottlenecks occur between the system and the GPU.
  • A 24 GB VRAM buffer offers vast headroom for high-resolution 4K textures and provides enough capacity to handle complex local AI workloads without the system slowing down.
  • The Ada Lovelace architecture utilizes a 384-bit memory bus to maintain high throughput which keeps frame delivery consistent during visually dense moments.
  • Physical dimensions on many models extend well beyond three slots in width and often exceed 330mm in length, which restricts your choice of compatible mid-tower enclosures.

This is a component that settles into the build as a permanent fixture of your workflow and demands that the rest of the PC matches its tier. Relying on a high-airflow mesh case is essentially mandatory to prevent the internal air temperature from rising to levels that would trigger thermal throttling. If you are willing to solve these power delivery and ventilation challenges before you press the power button, the hardware rewards you with a level of stability that remains unmatched in the consumer market. It is a build choice for those who want to move past the limitations of standard hardware and focus entirely on the output of their machine.

Radeon RX 7900 GRE
Feature Analysis:

A 260W typical power draw places this hardware in a practical sweet spot for builders who want high-tier performance without the excessive thermal output of flagship silicon. Since it uses two standard 8-pin power connectors, you can avoid the stiffness and clearance issues associated with newer high-density cables. This choice makes the installation process far more straightforward for those reusing an existing power supply or building in a compact chassis where cable management is often a struggle. While the base specification suggests a lower minimum, a 750W power supply is the target for a stable build to ensure the system handles power behavior during sudden visual transitions without hesitation.

The physical footprint and power requirements reflect a design that prioritizes compatibility across a wide range of mid-tower cases and motherboard generations. By utilizing a full PCIe 4.0 x16 interface, the card maintains its data throughput efficiency even if installed in an older PCIe 3.0 slot, preventing the bandwidth limitations found on cards with fewer lanes. This architectural stability ensures the hardware remains predictable and reliable over years of heavy use, rather than requiring a total system overhaul just to accommodate its presence. It is a dense, efficient package that focuses on the core requirements of high-resolution textures and thermal longevity.

  • Thermal Efficiency: The 260W TDP allows for manageable heat levels, ensuring your case fans do not have to run at maximum speeds to keep the internal environment stable.
  • Cable Compatibility: Using two 8-pin connectors means the card works with almost any standard power supply, eliminating the need for specialized adapters or specific ATX 3.0 hardware.
  • VRAM Insurance: A 16GB memory ceiling offers a significant buffer for heavy texture packs in modern titles, reducing the likelihood of stuttering as games become more asset-heavy.
  • Platform Longevity: The combination of RDNA 3.0 architecture and a full x16 interface provides a sturdy foundation that stays relevant as software requirements continue to evolve.
  • Installation Simplicity: The absence of experimental power standards and the manageable power draw make this a low-friction choice for both new builders and those looking for a plug-and-play upgrade.

Choosing this hardware means opting for a balance between raw capability and build-side convenience. You are getting a card that fills the gap for the builder who wants flagship-level visual assets and 1440p stability without the diminishing returns of higher wattage tiers. It avoids the complexities of specialized power management, resulting in a system that stays quiet and operates within safe thermal limits. The focus here is on a reliable experience that values long-term stability and physical compatibility above all else. It is a technical choice for someone who prefers a clean, predictable build over dealing with the heat and power requirements of the absolute top-tier silicon.

GeForce RTX 4090
Full Tech Specs:
Feature Specification
Name GeForce RTX 4090
MSRP $1,599
Release Date 2022-09-20
Chipset Manufacturer NVIDIA
Memory Size 24 GB
Memory Type GDDR6X
Memory Bus 384 bit
Memory Clock 1313 MHz
Memory Bandwidth 1010.0 GB/s
Base Clock 2235 MHz
Boost Clock 2520 MHz
Shading Units 16384
Ray Tracing Cores 128
TMUs 512
ROPs 176
Pixel Rate 443.5 GPixel/s
Texture Rate 1290.2 GTexel/s
Compute Power (FP16) 82.6 TFLOPS
Compute Power (FP32) 82.6 TFLOPS
Compute Power (FP64) 1.3 TFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 1x 16-pin
TDP 450 W
Suggested PSU 950 W
Radeon RX 7900 GRE
Full Tech Specs:
Feature Specification
Product Name Radeon RX 7900 GRE
MSRP $549
Release Date 2023-07-27
Chipset Manufacturer AMD
Memory Size 16 GB
Memory Type GDDR6
Memory Bus 256 bit
Memory Clock 2250 MHz
Memory Bandwidth 576.0 GB/s
Base Clock 1287 MHz
Boost Clock 2245 MHz
Shading Units 5120
Ray Tracing Cores 80
TMUs 320
ROPs 160
Pixel Rate 359.2 GPixel/s
Texture Rate 718.4 GTexel/s
Compute Power (FP16) 92.0 TFLOPS
Compute Power (FP32) 46.0 TFLOPS
Compute Power (FP64) 1.4 TFLOPS
Architecture RDNA 3.0
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 2x 8-pin
TDP 260 W
Suggested PSU 700 W

Final Verdict

GeForce RTX 4090 stands alone for users seeking heavy hardware specs and uncompromised results. With 24 GB of GDDR6X memory and a massive 384-bit bus, it moves data much faster than its counterpart. The huge count of 16384 shading units enables much faster rendering in complex scenes and provides a clear lead in heavy ray tracing scenarios. Using the Ada Lovelace architecture, it delivers exceptional performance in high-resolution environments and professional tasks such as local AI training. Since it requires a 16-pin connector and an 850 W power supply, builders must plan for a high-wattage system to handle the thermal output during heavy usage.

Radeon RX 7900 GRE is a different beast altogether. It uses the RDNA 3.0 architecture to provide strong results in standard rasterization without the extreme power requirements of the flagship card. While it features 16 GB of memory on a 256-bit bus, it remains a very capable choice for high-refresh gaming and standard creative work. The hardware is easier to integrate into existing builds because it relies on standard 8-pin power connectors and a more modest power supply. While it cannot match the raw compute or the advanced lighting features of the top-tier Nvidia part, it offers a practical path for those who do not require extreme VRAM for their daily applications.

  • Architecture: GeForce RTX 4090 uses high-speed GDDR6X and massive shading unit counts to dominate bandwidth-heavy tasks.
  • Power: Radeon RX 7900 GRE is much easier to cool and fits into standard cases without requiring specialized adapters or massive power supplies.
  • Performance: GeForce RTX 4090 provides a significant edge in lighting effects and professional software support while Radeon RX 7900 GRE offers solid results in standard titles.
  • Longevity: The 24 GB buffer on the Nvidia card ensures it will handle demanding textures for many years.

Buy GeForce RTX 4090 if you need the absolute best performance for 4K gaming, professional content creation, or local AI work, and have the budget for a top-tier system. Buy Radeon RX 7900 GRE if you want excellent 1440p gaming at a reasonable price, prioritize value over peak performance, or are building a power-efficient PC without the need for extreme VRAM or ray tracing.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.