GeForce RTX 5060 vs Intel Arc B570

Winner:
GeForce RTX 5060
Main Difference:
Page Summary:
Last updated:
January 31, 2026

The Essentials

GeForce RTX 5060

MSRP:
$299
See Current Price
Spec Sheet:
Core Count:
3840
Thread Count:
Base Clock:
2280 MHz
Boost Clock:
2497 MHz
Integrated Graphics:
VRAM:
8.0 GB
L3 Cache:
8.0 GB
TDP:
145 W
Socket:
128 bit
Bus Width:
128 bit
Release Date:
2025-05-19
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
44.5
36.1
1440p
31.9
23.8
4K
14.1
14.1
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Intel Arc B570

MSRP:
$219
See Current Price
Spec Sheet:
Core Count:
2304
Thread Count:
Base Clock:
2500 MHz
Boost Clock:
2500 MHz
Integrated Graphics:
VRAM:
10.0 GB
L3 Cache:
10.0 GB
TDP:
150 W
Socket:
160 bit
Bus Width:
160 bit
Release Date:
2025-01-16
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
30.3
30.3
1440p
24.7
23.9
4K
15.3
9.6
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 5060
Gaming Analysis:

The GeForce RTX 5060 functions as a targeted solution for 1080p gaming. Attempting to drive high-resolution panels with this hardware often leads to a compromised experience because the silicon lacks the raw horsepower to manage heavy pixel loads without substantial help from software upscaling. At its native 1080p target, the card provides a fluid experience in competitive shooters like Counter-Strike 2 and Valorant. In these titles, it maintains the high frame rates necessary for responsive movement. The behavior changes when moving into the latest flagship titles like Cyberpunk 2077 or Hogwarts Legacy, where you can expect a stable image as long as you respect the hardware boundaries.

The 8GB VRAM buffer acts as a firm ceiling on your visual settings. Modern games frequently demand more than 8GB of memory to load high-quality textures, and hitting that limit can cause noticeable hitching or stuttering. In demanding releases like Indiana Jones and the Great Circle or Stalker 2, the 8GB capacity is a physical constraint. To maintain consistent frame delivery and avoid sudden performance drops, many players will need to adjust texture sliders to Medium or High. This card is not designed for those who insist on Ultra presets across the board. It is built for the player who wants a reliable 1080p machine with a modest power profile.

  • 1080p Performance: The Blackwell architecture is most effective at this resolution, where it delivers clear visuals and steady motion across a wide library of games.
  • Ray Tracing Realities: While the 30 dedicated RT cores facilitate advanced lighting, enabling heavy effects in demanding titles is usually a heavy trade-off. Complex reflections and global illumination can significantly impact performance, making the gameplay feel heavy unless you reduce other settings.
  • DLSS 4 and Frame Generation: The inclusion of Multi-Frame Generation provides a way to increase perceived smoothness through the new hardware. This is the primary way the card remains viable if you attempt to play at 1440p, though it produces the best results when the base performance is already stable to avoid sluggish input.
  • Memory and Bandwidth: The 128-bit bus and GDDR7 memory are fast but narrow. You may see performance degradation in memory-intensive scenarios compared to cards with larger buffers because the architecture is frequently waiting for data to move through the limited pipeline.
Intel Arc B570
Gaming Analysis:

The Intel Arc B570 delivers strong results as a high-value choice for standard resolutions, though it can manage higher pixel counts if you are willing to adjust expectations. It is not meant for heavy workloads at 4K where performance drops off significantly. At 1080p, the experience is fluid and consistent across modern releases, representing a serious step up in performance for its class. While the Xe2-HPG architecture is more refined than previous efforts, you still need to be aware that Intel hardware relies heavily on steady driver updates to stay competitive.

The 10GB VRAM configuration serves as a capable middle ground between cramped budget options and high-end enthusiast cards. This extra memory headroom helps prevent the stuttering and hitching that often occur when 8GB cards run out of space for textures. With a 160-bit memory bus, the card maintains enough bandwidth to handle fast motion without the underlying data pipeline becoming a bottleneck. You likely will not have to drop down to lower texture settings just to keep the image stable during intense scenes.

Ray tracing performance is a standout trait for any card at this MSRP, though you should keep your settings realistic. The dedicated ray tracing cores within the Battlemage architecture handle lighting calculations with more efficiency than typical entry-level hardware, often competing comfortably with standard industry alternatives in heavy lighting scenarios. Reflections and shadows appear more natural without making the game feel sluggish. At 1440p, the demand of these effects grows, making XeSS upscaling a helpful tool for keeping the visuals smooth and responsive.

  • Standard resolution gaming is excellent, frequently rivaling more expensive hardware.
  • Higher resolutions are reachable but usually require upscaling or lower presets to maintain a steady feel.
  • The Xe2-HPG architecture shows strong compatibility with modern DirectX 12 and Vulkan APIs.
  • Legacy DirectX 11 software may occasionally experience uneven frame delivery as drivers manage the CPU overhead.
  • The 10GB of GDDR6 memory avoids the texture popping or visual glitches common on 8GB cards.
  • Intel XeSS 2 provides significant fluidity improvements through frame generation technology.
  • A power supply of at least 550W is recommended to ensure the system remains stable under heavy gaming loads.
GeForce RTX 5060
Productivity Analysis:

While the GeForce RTX 5060 handles gaming with competence, shifting into a professional workflow requires a different perspective on how this Blackwell hardware manages pressure. You should view this card as a specialized tool for entry-level creative work where project size stays within predictable bounds. The core architecture is responsive during active editing, but the 8.0 GB of GDDR7 memory acts as a definitive physical boundary when you transition from light photo adjustments to complex production environments. If you are handling standard 1080p video cuts or basic graphic design, the experience remains fluid, but the hardware will signal its limits clearly the moment you attempt to load a detailed 3D scene or a high-resolution timeline that demands more space than the buffer provides.

The memory capacity is the primary factor you must manage if you intend to use this card as a consistent workstation component. In rendering engines like Blender, a project must fit within the video memory to maintain speed, and exceeding that 8.0 GB threshold often forces the system to rely on much slower system memory. This transition usually results in significant slowdowns that can stall a workspace and extend wait times for simple visual updates. For a student or a hobbyist building their first dedicated machine, it offers a stable starting point, but professionals dealing with large-scale assets will find they spend a fair amount of time optimizing their files to stay under the hardware ceiling.

  • The CUDA Ecosystem: Choosing this architecture provides access to a deep library of software support where most creative suites prioritize stability for these specific cores. In applications like Premiere Pro or various 3D suites, this translates to fewer software errors and a more predictable experience when you are working against a tight deadline.
  • Memory Throughput: The 448.0 GB/s bandwidth helps keep the interface feeling snappy during high-resolution playback. Even though the memory pool is small, the speed at which data moves helps prevent the "sticky" feeling often found on older hardware when scrubbing through a project.
  • Video Processing: The dedicated encoding hardware manages specialized high-fidelity video formats by offloading the heavy computational work from the processor. This allows the rest of your operating system to remain responsive while the GPU handles the background labor of rendering out a video file.
  • Compute Performance: With 19.2 TFLOPS of power available for specific math operations, the card handles modern AI-accelerated tasks with efficiency. Tools like noise reduction or automated masking in photo editors process significantly faster on these dedicated Blackwell cores than they would on a standard CPU.
  • Interface Constraints: You should be aware that the 128-bit bus creates a narrow path for data movement. This limitation becomes most apparent when you try to export very large assets or attempt to run multiple heavy creative applications at the same time, which can lead to a sense of congestion.

Efficiency is the defining trait of this card for a compact workstation build. It is a reliable engine that avoids the stability issues sometimes found in less established ecosystems, provided you keep your project scope realistic. You receive the latest architectural benefits and the security of refined drivers, which makes it a safe choice for those who value a consistent work environment over raw scale. This card serves the creator who needs a predictable machine that operates within a modest power profile and does not require a massive power supply, as a 450W unit is generally sufficient for the entire system.

Intel Arc B570
Productivity Analysis:

While the hardware handles gaming with ease, the Intel Arc B570 offers a different experience when you move into professional software where stability and driver maturity take center stage. This card provides the hardware muscle for creative tasks, but the software side remains in a state of ongoing development. You can ignore occasional friction in a match, but a crash during a long render is much harder to overlook. The Xe2-HPG architecture is built for modern standards, yet anyone using this for work must accept that Intel is still refining the software support required for a perfectly fluid professional workflow.

The 10GB VRAM buffer offers a helpful middle ground compared to the more common 8GB found on many entry-level cards. This extra space prevents the immediate slowdowns that happen when a video timeline or a 3D scene exceeds the memory of the card. With a 160-bit memory bus and 380 GB/s of bandwidth, scrubbing through high-resolution footage feels responsive rather than sticky or sluggish. If you push into massive 3D environments with heavy textures, you will eventually reach a limit where the system begins to struggle, but for standard 1440p projects, the ceiling is comfortable. It provides just enough breathing room to keep your focus on the work instead of managing hardware limits.

Intel includes a capable media engine featuring hardware support for modern standards like AV1 and VVC. This allows the GPU to process heavy exports and high-bitrate broadcasts without placing the entire load on your CPU. It handles complex chroma subsampling that often causes issues for older hardware, making it a strong choice for video editors working with modern camera files. You lose the specific software optimizations found in the CUDA ecosystem, which can be a hurdle if your specific tools are built around that industry standard. However, the raw compute performance and XMX engines make it a credible contender for AI-assisted tools like noise reduction and automated masking in common editing suites.

  • The 10GB of VRAM provides a small but helpful safety margin for complex timelines and higher-resolution texture work.
  • Hardware support for VVC and AV1 makes the card a strong choice for modern video encoding and archival tasks.
  • High memory bandwidth ensures that navigating through uncompressed media files remains smooth and predictable.
  • The 550W power supply requirement ensures the system has enough headroom for stability during the long hours of a heavy render.
  • Dedicated XMX engines provide a significant boost for localized AI tasks like upscaling and smart masking in creative applications.
GeForce RTX 5060
Feature Analysis:

The 8.0 GB VRAM buffer represents the definitive physical boundary for this hardware as we move further into the decade. While the Blackwell architecture introduces refined data handling, that specific memory capacity ensures the card remains a specialized tool for 1080p environments rather than a flexible solution for higher resolutions. If you attempt to load high-resolution texture packs at 1440p, the 128-bit bus may struggle to move assets quickly enough to prevent stuttering or frame time inconsistencies during fast movement. It is a capable engine for its class, but you must accept that it is built for a lifestyle of balanced settings in the most demanding upcoming titles.

A 145 W TDP places this card firmly in the power-efficient category, which simplifies your cooling strategy and prevents the system from generating excessive heat in smaller cases. While the official minimum power specification is 300 W, that figure leaves little room for the power spikes common during intensive gaming sessions. To ensure the system remains stable when both the GPU and CPU reach high utilization, you should install a 450W power supply. This extra capacity provides the necessary electrical headroom to protect your hardware from unexpected shutdowns under load.

  • Interface Selection: The PCIe 5.0 x8 interface is a factor to consider if you are upgrading an older machine with a PCIe 3.0 motherboard, as the limited lane count can impact bandwidth available for asset streaming.
  • Simple Connectivity: You can use a standard 1x 8-pin power connector with this model, allowing you to utilize traditional power cables without requiring specialized adapters or specific ATX 3.1 power supply upgrades.
  • Architecture Benefits: Building with Blackwell 2.0 provides access to the latest architectural efficiencies and driver optimizations, ensuring the card remains compatible with modern software features for several years.
  • Form Factor Versatility: The modest power requirements and thermal output of this 145 W chip usually result in smaller physical card dimensions, making it an excellent candidate for compact builds where space is restricted.
  • Reliability: The refined manufacturing process allows for a predictable experience where the card operates within a narrow thermal window, reducing the stress on your other internal components over time.

This is a hardware solution for the pragmatic builder who prioritizes a clean and straightforward assembly process. It provides the stability of the latest architecture without the physical complications of oversized dimensions or intense cooling requirements. You receive the benefits of the TSMC N4 process and a highly efficient power profile, but the 8.0 GB memory pool dictates your maximum visual settings. It functions as a reliable and predictable 1080p engine that stays within its lane while maintaining a quiet and cool presence inside your chassis.

Intel Arc B570
Feature Analysis:

A typical thermal design power of 150W makes the Intel Arc B570 relatively simple to cool, though build stability depends on more than just the temperature of the chip. While the base specification suggests a 450W power supply, aiming for a 550W unit provides a necessary buffer for transient power spikes and system wide efficiency. Running a power supply too close to its maximum capacity often leads to increased fan noise and unnecessary heat buildup within the case. Maintaining this overhead ensures your internal components receive clean power during the rapid fluctuations of modern gaming and creative software.

The PCIe 4.0 x8 interface presents a specific consideration for anyone installing this card into an older motherboard. Because it utilizes half the physical lanes of a full x16 slot, users on PCIe 3.0 platforms will effectively operate with reduced bandwidth. This limitation rarely causes issues in every title, but it can lead to inconsistent frame delivery or stuttering in games that aggressively move data between the system memory and the 10GB of VRAM. You should also verify that your system supports Resizable BAR, as this specific Intel architecture relies on that feature to function at its intended performance level.

You can avoid the complexities of modern high end power standards because this card relies on a single 8-pin connector. There is no requirement for specialized adapters or the stiffer cables associated with newer power specifications, which helps keeps cable management straightforward and reliable. The 10GB of GDDR6 memory sits on a 160-bit bus, providing a total of 380 GB/s bandwidth to keep textures loading smoothly at 1080p and 1440p. While you are adopting a newer software ecosystem that is still maturing, the hardware itself follows a traditional and user friendly installation path that fits easily into most standard mid sized cases.

  • The 150W power draw helps maintain a quiet system environment by putting less cooling pressure on your case fans.
  • A standard 8-pin power connector ensures compatibility with most existing power supplies without needing extra adapters.
  • Using a 550W power supply provides the stability needed to handle the momentary power fluctuations common in the Xe2-HPG architecture.
  • The 10GB VRAM configuration offers a meaningful safety margin over older 8GB cards when playing open world games with high resolution textures.
  • Support for the VVC codec and AV1 encoding provides a future proof pathway for high quality video playback and streaming tasks.
GeForce RTX 5060
Full Tech Specs:
Feature Specification
Model GeForce RTX 5060
MSRP $299
Release Date 2025-05-19
Chipset Manufacturer NVIDIA
Memory Size 8 GB
Memory Type GDDR7
Memory Bus 128 bit
Memory Clock 1750 MHz
Memory Bandwidth 448.0 GB/s
Base Clock 2280 MHz
Boost Clock 2497 MHz
Shading Units 3840
Ray Tracing Cores 30
TMUs 120
ROPs 48
Pixel Rate 119.9 GPixel/s
Texture Rate 299.6 GTexel/s
Compute Power (FP16) 19.2 TFLOPS
Compute Power (FP32) 19.2 TFLOPS
Compute Power (FP64) 299.6 GFLOPS
Architecture Blackwell 2.0
Process Size 5 nm
Interface PCIe 5.0 x8
Power Connectors 1x 8-pin
TDP 145 W
Suggested PSU (Minimum) 400 W
Intel Arc B570
Full Tech Specs:
Feature Specification
Product Name Intel Arc B570
MSRP $219
Release Date 2025-01-16
Manufacturer Intel
Memory Size 10 GB
Memory Type GDDR6
Memory Bus 160 bit
Memory Clock 2375 MHz
Memory Bandwidth 380.0 GB/s
Base Clock 2500 MHz
Boost Clock 2500 MHz
Shading Units 2304
Ray Tracing Cores 18
TMUs 144
ROPs 80
Pixel Rate 200 GPixel/s
Texture Rate 360 GTexel/s
Compute Power (FP16) 23.0 TFLOPS
Compute Power (FP32) 11.5 TFLOPS
Compute Power (FP64) 1.4 TFLOPS
Architecture Xe2-HPG
Process Size 5 nm
Interface PCIe 4.0 x8
Power Connectors 1x 8-pin
TDP 150 W
Recommended PSU 550 W

Final Verdict

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.