GeForce RTX 5070 vs GeForce RTX 4070 Super

Winner:
GeForce RTX 5070
Main Difference:
DLSS 4 support and a more affordable $549 MSRP at launch
Page Summary:
GeForce RTX 5070 wins by offering newer Blackwell architecture, DLSS 4 with Multi-Frame Generation, and a $50 lower MSRP than the outgoing card.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 5070

MSRP:
$549
See Current Price
Spec Sheet:
Core Count:
6144
Thread Count:
Base Clock:
2325 MHz
Boost Clock:
2512 MHz
Integrated Graphics:
VRAM:
12.0 GB
L3 Cache:
12.0 GB
TDP:
250 W
Socket:
192 bit
Bus Width:
192 bit
Release Date:
2025-03-04
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
68.1
64
1440p
56.8
50
4K
41.6
41.6
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

GeForce RTX 4070 Super

MSRP:
$599
See Current Price
Spec Sheet:
Core Count:
7168
Thread Count:
Base Clock:
1980 MHz
Boost Clock:
2475 MHz
Integrated Graphics:
VRAM:
12.0 GB
L3 Cache:
12.0 GB
TDP:
220 W
Socket:
192 bit
Bus Width:
192 bit
Release Date:
2024-01-08
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
67.2
64.2
1440p
55.8
49.7
4K
43.4
40.1
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 5070
Gaming Analysis:

The GeForce RTX 5070 is a specialized 1440p tool that hits a distinct ceiling if you try to force high-resolution output without software assistance. While it handles 1440p with ease in heavy titles, it is not a brute-force monster. The raw performance shows a visible drop as resolution climbs, moving from a smooth experience at 1080p to a heavier feel at 4K. If you are gaming on a 1440p monitor, the motion feels fluid and responsive, but once you move to a 4K display, the hardware begins to struggle unless you lean on DLSS and frame generation technologies.

The 12GB of GDDR7 memory acts as a strict guardrail for your visual settings. It provides enough breathing room for standard 1440p textures, but the 192-bit bus cannot save you from physical capacity limits when settings are pushed to the max. Modern titles using advanced engines will eat through this buffer quickly. In demanding upcoming games, you will find yourself on a tight leash with texture sliders. Pushing settings to the highest levels while enabling heavy ray tracing effects will likely cause stuttering or visible asset popping as the card reaches its 12GB limit. It is a capable mid-range buffer, but it lacks the long-term security found in cards with higher VRAM capacities.

  • 1440p Performance: This is the sweet spot where the card maintains fluidity without significant compromises to visual fidelity.
  • 4K Reality: Using this card for native 4K often results in a sluggish experience, surviving primarily through the use of multi-frame generation and AI upscaling.
  • Ray Tracing: With 48 dedicated Blackwell RT cores, standard reflections look sharp, but the silicon feels the weight of full path tracing in heavy titles.
  • The Texture Tax: 12GB of VRAM is adequate for the short term, but high-resolution texture packs in future titles will push this card toward its absolute limit.
  • Software Dependency: Performance relies heavily on the Blackwell architecture features; without upscaling, the generational leap in raw power feels modest.

Ray tracing on this hardware is competent but requires respect for its limits. While the Blackwell 2.0 architecture handles complex lighting better than previous generations, the performance remains balanced rather than dominant. You can enable reflections and shadows while keeping the experience fluid. However, turning on extreme lighting modes or full path tracing will cause performance to plummet. At that point, the card relies on its optical flow hardware to synthesize motion, which can introduce a heavier feeling in control inputs despite the visual frame count appearing high. A 750W power supply is recommended to keep this system stable under these heavy gaming loads.

GeForce RTX 4070 Super
Gaming Analysis:

The GeForce RTX 4070 Super occupies a clear sweet spot for high-resolution gaming. It provides the horsepower needed to keep movement fluid at high settings without forcing a compromise on visual clarity. While it can handle 4K, the hardware reaches its limits at that resolution, making it a secondary choice for those with a high-refresh UHD monitor. When pushed to 1080p, the card is overkill and will likely result in a scenario where the CPU becomes the primary speed limit rather than the GPU.

Memory capacity defines the longevity of this card. With 12GB of GDDR6X VRAM on a 192-bit bus, you have a solid buffer that handles modern AAA textures well. You avoid the stuttering or texture pop-in that can impact cards with lower memory pools in demanding titles. However, the architecture is not a permanent solution for 4K. If you try to run extreme resolution texture packs at native 4K, the 192-bit bus width can lead to uneven frame delivery when the data volume exceeds the bandwidth.

Ray tracing is a realistic option with this card rather than a simple checklist item. Because of the 56 dedicated third-generation RT cores in the Ada Lovelace architecture, you can enable complex reflections and global illumination at 1440p without the experience turning into a slideshow. The lighting remains stable and shadows stay defined. If the native hardware calculations start to struggle, DLSS 3 Frame Generation acts as a safety net, using hardware-level optical flow to help maintain smooth motion even when light calculations are heavy.

  • 1440p Performance: This is the native home for this GPU, offering crisp movement and high responsiveness in almost every modern title.
  • 4K Viability: It serves as an entry-level 4K solution, though it relies heavily on upscaling technology to maintain a comfortable experience.
  • Ray Tracing Reality: Hardware-accelerated lighting is fully playable across common resolutions, ensuring reflections and shadows look sharp.
  • VRAM Ceiling: 12GB is sufficient for high settings today, but it represents the card's boundary for future 4K texture demands.
  • Power Management: This card runs efficiently, though a 650W power supply is the recommended floor for a stable system.
GeForce RTX 5070
Productivity Analysis:

While this card excels as a high-speed 1440p gaming tool, its transition to a professional workstation environment reveals a piece of hardware that functions like a surgical scalpel rather than a heavy tool for massive workloads. Production tasks that rely on accuracy and stability benefit from the Blackwell 2.0 architecture, but there is a mechanical limit when you push into high-resolution professional territory. You are choosing a refined ecosystem that prioritizes software polish over raw physical capacity. The 12GB of GDDR7 memory provides a comfortable middle ground for standard projects, keeping the system responsive when you have several creative applications open at the same time. If you try to scrub through a high-bitrate timeline loaded with complex effects, that 12GB buffer turns into a hard ceiling. You will likely see sluggish preview windows once the memory fills up because it lacks the long-term security found in cards with higher capacities. You must manage your texture pools and layer counts with a level of discipline that users working on massive projects might find restrictive.

The 192-bit bus combined with 672 GB/s of memory bandwidth makes navigating through asset-heavy scenes feel snappy. The inclusion of the NVENC encoder handles the heavy lifting of AV1 video exports, which allows you to manage high-bitrate streams without your CPU suffering a significant performance penalty. This is a clear efficiency win for single-pc setups where hardware must juggle multiple tasks at once. Stability remains a primary selling point for this hardware in a professional workspace. While other options might offer more raw memory for the money, you would lose the polished software support and specific acceleration that many professionals rely on to meet deadlines. The hardware is fast enough to handle freelance workloads at 1440p, but it remains a secondary choice for anyone building a dedicated 4K workstation or a heavy render node. To keep this system stable during long export sessions, a 700W power supply is recommended.

  • The 30.9 TFLOPS of FP16 and FP32 performance assists with AI-driven tools like generative fill or noise reduction, making these tasks feel nearly instantaneous on the specialized hardware.
  • Professional 3D rendering in applications like Blender sees a speed boost from the 48 dedicated ray tracing cores, though it stays within its mid-range tiering.
  • Support for 4:2:2 hardware decoding is a shift for video editors because it reduces the need to generate proxy files for footage from specific camera brands.
  • The 5th Gen Tensor cores allow enthusiasts to run language models with 8-bit quantization at usable speeds as long as the 12GB memory limit is respected.
  • A high-airflow case is helpful because the 250W power draw creates enough thermal density to heat up surrounding components during multi-hour render jobs.
GeForce RTX 4070 Super
Productivity Analysis:

While the gaming side of this hardware focuses on visual fluidity, the GeForce RTX 4070 Super transitions into a stable workhorse for professional applications. Transitioning from high resolutions to heavy rendering requires a different kind of reliability, and the Ada Lovelace architecture provides a specialized environment through the CUDA ecosystem. This integration ensures that popular creative suites like Blender and common video editing platforms recognize the hardware immediately without tedious configuration. The stability of these drivers means you spend less time troubleshooting viewport glitches and more time finishing projects under a tight deadline.

The 12GB of VRAM serves as a middle ground for creators. For video editing, this capacity provides 1440p and 4K timelines with enough headroom to maintain smooth scrubbing even when multiple color layers or effects are applied. However, for 3D artists working with complex simulations or massive architectural environments, the memory buffer represents a clear boundary. If your scene data exceeds this limit, the system may rely on slower system memory, which impacts the responsiveness of your workflow. The 504.2 GB/s memory bandwidth helps keep transitions between assets quick, but the 192-bit bus width is something to keep in mind if your work consistently involves massive uncompressed files.

For those involved in video production and streaming, the dedicated hardware encoding support handles the heavy lifting of AV1 and HEVC compression. This allows the GPU to manage intense export tasks while leaving the CPU available to handle other software in the background. The inclusion of specialized hardware for AI-driven tasks makes a noticeable difference in modern tools like noise reduction in photography or intelligent mask generation in video suites. These processes happen with a level of speed that reduces the friction of repetitive creative tasks.

  • CUDA Integration: This provides a standardized foundation for rendering engines, ensuring broad compatibility and reliable performance across major creative software platforms.
  • Memory Headroom: The 12GB of memory offers a comfortable buffer for high-resolution video work and moderately complex 3D scenes without immediate resource bottlenecks.
  • Encoding Efficiency: Dedicated hardware support for AV1 allows for faster export times and high-quality streaming without taxing the rest of the system during production.
  • AI Acceleration: Specialized core hardware speeds up modern creative features like background removal or intelligent upscaling in various editing applications.
  • Thermal Stability: The design manages power effectively during long rendering sessions, preventing performance drops that occur when hardware gets too hot over several hours of use.
GeForce RTX 5070
Feature Analysis:

A 250W typical power draw represents a substantial thermal shift for this class of hardware and requires a deliberate approach to case airflow. While the base specification suggests a 600W power supply, a 700W unit is the safer choice to handle the transient power spikes common in modern high-performance silicon. This card utilizes a single 16-pin power connector, which demands careful cable management to ensure the plug is fully seated and the wires are not under extreme tension near the socket. Given the heat density produced during long sessions, your chassis needs a consistent supply of fresh air to prevent the fans from ramping up to audible levels. This build reality means a cramped case with poor intake will likely result in higher internal temperatures for your other components.

The transition to the Blackwell 2.0 architecture brings the PCIe 5.0 x16 interface into the mid-range space, though it remains fully compatible with older PCIe 4.0 motherboards without a meaningful loss in bandwidth. You are essentially balancing a high-tech ecosystem against the physical constraints of a 192-bit memory bus. While the memory speed is high, the 12.0 GB capacity dictates how you handle visual settings in the coming years. It is a highly optimized tool for specific resolutions, provided you respect the limits of the physical memory pool. During assembly, the primarily hurdle is the 16-pin cable clearance, as these connectors require a straight path before any significant bends to maintain a reliable electrical connection.

  • Power Management: A 700W power supply provides the necessary stability to ensure the system does not shut down during sudden peaks in demand.
  • Thermal Density: The 250W TDP means the card exports significant heat into the case, making at least two front intake fans a requirement for stable operation.
  • Cable Safety: The 16-pin connection features recessed sensing pins designed to prevent power delivery if the cable is loose, so listen for a physical click during installation.
  • Memory Ceiling: The 12.0 GB of VRAM serves as a strict limit for high-resolution texture packs, which may lead to asset swapping if the buffer is overfilled.
  • System Interface: Support for PCIe 5.0 ensures the card is ready for the latest motherboard standards while maintaining efficiency on older platforms.

Memory capacity remains the most significant long-term factor to consider when planning your build around this hardware. While the current bandwidth is sufficient for fluid navigation in complex scenes, the 12.0 GB of GDDR7 acts as a firm guardrail that will eventually require you to lower texture quality in the most demanding future titles. This hardware is designed for a refined and efficient experience rather than brute-force longevity through massive memory pools. If you understand that you are buying into a specific performance tier that prioritizes modern architectural features over raw capacity, the hardware delivers a very consistent and predictable user experience. It functions best in a well-ventilated mid-tower where the power delivery and thermal output can be managed without compromising the lifespan of neighboring parts.

GeForce RTX 4070 Super
Feature Analysis:

The 220W power draw places this hardware into a category where heat is manageable but still requires a thoughtful approach to airflow. Because the Ada Lovelace architecture is physically efficient, the cooling solutions found on most models tend to overbuild for the actual thermal output, allowing the system to maintain a steady temperature without the fans needing to reach high speeds. This results in a build that remains relatively quiet even when the system is under a heavy load for several hours. While you do not need an exotic cooling setup, ensuring your case has a clear path for intake and exhaust will prevent the card from soaking the rest of your components in recycled warm air.

Power delivery relies on a single 16-pin connector which introduces a specific physical requirement for your cable management. If you are not using a power supply with a native cable for this standard, you will need to account for the space required by the included adapter. This adapter is often stiff and requires enough clearance between the GPU and the side panel of your case to avoid putting stress on the connection point. For a stable system that can handle sudden micro-bursts of energy during intense rendering or complex scenes, a 650W power supply provides the necessary electrical headroom to avoid unexpected shutdowns.

The memory configuration creates a specific ceiling for those who plan on keeping this build for several years. Having 12GB of VRAM is a comfortable amount for 1440p textures, yet it serves as a clear boundary if you intend to push into high-resolution 4K asset packs or heavy 3D modeling environments. While the PCIe 4.0 x16 interface ensures you are getting the full bandwidth available from your motherboard, the physical memory capacity remains the primary factor that will dictate when you might eventually need to lower texture settings in future software. It is a balanced tool for modern high-resolution gaming that rewards a clean installation and a high-quality power source.

  • Power Supply Requirements: A 650W unit is the ideal choice to ensure the system remains stable during transient power spikes without stressing the internal protections.
  • Cable Management: The 16-pin power connector requires careful routing and enough physical clearance to prevent sharp bends near the GPU input.
  • Physical Interface: The PCIe 4.0 x16 connection provides full bandwidth, making it a reliable fit for both modern and slightly older motherboards without sacrificing data speeds.
  • VRAM Longevity: The 12GB buffer is a solid middle ground that handles current high-resolution textures well but may require observation as software demands grow.
  • Thermal Profile: A 220W TDP means the card stays within reasonable temperature limits, allowing for a build that prioritizes lower noise levels.
GeForce RTX 5070
Full Tech Specs:
Feature Specification
Name GeForce RTX 5070
MSRP $549
Release Date 2025-03-04
Chipset Manufacturer NVIDIA
Memory Size 12 GB
Memory Type GDDR7
Memory Bus 192 bit
Memory Clock 1750 MHz
Memory Bandwidth 672.0 GB/s
Base Clock 2325 MHz
Boost Clock 2512 MHz
Shading Units 6144
Ray Tracing Cores 48
TMUs 192
ROPs 80
Pixel Rate 201 GPixel/s
Texture Rate 482.3 GTexel/s
Compute Power (FP16) 30.9 TFLOPS
Compute Power (FP32) 30.9 TFLOPS
Compute Power (FP64) 482.3 GFLOPS
Architecture Blackwell 2.0
Process Size 5 nm
Interface PCIe 5.0 x16
Power Connectors 1x 16-pin
TDP 250 W
Suggested PSU 700 W
GeForce RTX 4070 Super
Full Tech Specs:
Feature Specification
Name GeForce RTX 4070 Super
MSRP $599
Release Date 2024-01-08
Chipset Manufacturer NVIDIA
Memory Size 12 GB
Memory Type GDDR6X
Memory Bus 192 bit
Memory Clock 1313 MHz
Memory Bandwidth 504.2 GB/s
Base Clock 1980 MHz
Boost Clock 2475 MHz
Shading Units 7168
Ray Tracing Cores 56
TMUs 224
ROPs 80
Pixel Rate 198 GPixel/s
Texture Rate 554.4 GTexel/s
Compute Power (FP16) 35.5 TFLOPS
Compute Power (FP32) 35.5 TFLOPS
Compute Power (FP64) 554.4 GFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 1x 16-pin
TDP 220 W
Suggested PSU 650 W

Final Verdict

The GeForce RTX 5070 represents a notable shift in value by launching with a $549 MSRP which is fifty dollars lower than the launch price of the previous Super model. This price adjustment is paired with the move to the Blackwell 2.0 architecture, bringing significant technological improvements over the Ada Lovelace foundation. One of the most impactful upgrades involves the memory subsystem. While the capacity remains at 12GB for both cards, the 5070 utilizes GDDR7 memory to reach much higher bandwidth than the GDDR6X found on the older unit. This faster memory pipeline helps smooth out asset streaming and handles large texture data more effectively during intense gaming sessions.

Beyond raw hardware, the software stack provides a major divide through the introduction of DLSS 4 and Multi-Frame Generation. This feature set is exclusive to the newer Blackwell cards and offers more advanced frame synthesis than the previous generation can manage. In terms of physical connectivity and standards, the 5070 moves to PCIe 5.0 and includes a refreshed media engine designed to handle modern video codecs and AI-heavy creative tasks more efficiently. Even though both cards target a similar performance bracket, the newer architecture provides a more sophisticated toolkit for long-term use. The power requirements are slightly higher on the newer card, requiring a sturdier power supply, but the trade-off comes in the form of superior feature access and better launch-day value.

  • Buy GeForce RTX 5070 if you want the exclusive benefits of DLSS 4, faster GDDR7 memory bandwidth, and the better value provided by its lower $549 MSRP.
  • Buy GeForce RTX 4070 Super if you prefer a card with slightly lower power supply requirements and do not mind missing out on the newest Blackwell software features and the upgraded media engine.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.