GeForce RTX 5080 vs GeForce RTX 5070 Ti

Winner:
GeForce RTX 5080
Main Difference:
Roughly 10 percent gaming lead and higher core counts for $250 MSRP more
Page Summary:
GeForce RTX 5080 wins by offering superior core counts and faster memory bandwidth that provides a clear performance lead over the 5070 Ti, though it costs $999 MSRP.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 5080

MSRP:
$999
See Current Price
Spec Sheet:
Core Count:
10752
Thread Count:
Base Clock:
2295 MHz
Boost Clock:
2617 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
360 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2025-01-30
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
84.9
84.9
1440p
78.1
73
4K
63.7
63.7
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

GeForce RTX 5070 Ti

MSRP:
$749
See Current Price
Spec Sheet:
Core Count:
8960
Thread Count:
Base Clock:
2295 MHz
Boost Clock:
2452 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
300 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2025-02-20
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
78.8
85
1440p
70.8
71.7
4K
58.7
62.4
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 5080
Gaming Analysis:

The GeForce RTX 5080 acts as a high-tier powerhouse for enthusiasts who want to push high resolutions without sacrificing fluidity or visual density. It maintains a strong presence under the flagship model by offering a significant portion of its gaming output while being positioned for a wide range of top-tier builds. You can expect a liquid experience at 4K on ultra settings, though the hardware really finds a rhythm when paired with high-refresh panels at 1440p where it saturated the display with ease. It remains a heavy hitter in pure rasterization and keeps visuals crisp even during the most demanding titles.

Equipped with 16GB of GDDR7 memory, this card provides a massive buffer against the hitching and blurry textures that can occur when video memory is pushed to the limit. This VRAM overhead serves as a safety net for cranking sliders to their highest positions without fear of sudden performance drops. The 256-bit bus combined with the speed of GDDR7 provides substantial bandwidth that keeps assets sharp and responsive. You likely will not have to worry about managing texture quality for several years due to the efficiency of the Blackwell 2.0 architecture.

Ray tracing is where the GeForce RTX 5080 defines its value by handling complex lighting and dense reflections with remarkable stability. Because it uses fourth-generation RT cores and fifth-generation Tensor hardware, cinematic effects like path tracing remain viable for actual gameplay rather than just hardware demonstrations. It relies on DLSS 4 and Multi Frame Generation to significantly lift the frame rate in supported titles by generating intermediate frames via AI. This translates to an experience that feels much faster than raw rendering would allow, and the added latency from these technologies is barely perceptible during standard play.

  • Native 4K performance feels smooth and consistent even in the most demanding AAA titles.
  • The 16GB VRAM pool supports uncompressed textures at high resolutions without micro-stutter.
  • DLSS 4 Multi Frame Generation dramatically increases perceived fluidity in games with heavy ray tracing.
  • Dedicated hardware for ray tracing ensures that complex lighting effects do not cause sudden performance cliffs.
  • Architecture-level efficiency keeps input latency low enough for fast-paced competitive environments.
GeForce RTX 5070 Ti
Gaming Analysis:

The GeForce RTX 5070 Ti acts as a heavyweight for high-resolution gaming, specifically designed to dominate the mid-to-high tier of performance. It handles the native resolution of enthusiast-grade displays with significant overhead, though it transitions into a more calculated role when pushing the extreme pixel counts of the highest resolutions. In those scenarios, the hardware maintains fluidity but relies more on its architectural efficiency rather than raw brute force. It settles into a comfortable rhythm where motion remains smooth and responsive without the sluggishness often found in lower-tier silicon.

The 16GB of GDDR7 memory provides a massive buffer for modern visual demands. You are largely protected from the stuttering and texture pop-in that can occur when a GPU runs out of room for high-quality assets. Modern titles with dense environments require heavy texture loads that can overwhelm cards with smaller capacities, but the 256-bit bus here allows you to push settings toward their maximum without hitting a wall. This VRAM capacity ensures that game worlds stay sharp and detailed throughout long sessions rather than dropping into blurry or low-quality placeholders.

  • Rasterization Performance. This card shows a clear lead over previous-generation mid-range options and stays competitive with older enthusiast-tier flagships in traditional rendering tasks.
  • Ray Tracing Capabilities. The Blackwell architecture handles complex lighting and shadow calculations with composure. Because it features 70 dedicated RT cores, you can enable advanced lighting effects and path tracing while maintaining a stable visual flow that avoids the choppy behavior of less capable hardware.
  • DLSS and Frame Generation. The inclusion of modern upscaling tech is a significant help at the highest resolutions. It allows the card to take a heavy native load and transform it into a fluid experience, which is especially useful when every detail is cranked to the limit.
  • High Resolution Considerations. While it matches elite previous-generation cards in ray tracing, the 256-bit bus width means it is most efficient when paired with upscaling if you intend to play at the highest possible resolutions with all effects active.

The transition to GDDR7 provides a substantial jump in bandwidth over the prior generation, which helps eliminate data bottlenecks and micro-stutter. This is a sophisticated piece of silicon that focuses on a clean and stable image. You are investing in the ability to keep visual features enabled without watching the experience degrade or become unplayable when the action on screen gets intense. If your goal is a 800W power-managed build that stays relevant as game engines become more demanding, this card fits that role well.

GeForce RTX 5080
Productivity Analysis:

While the gaming capability of this card is notable, the real value for a professional build lies in how it handles high-pressure rendering and complex video timelines where a system stall means lost time. Professional workloads rely on stability and the industry standard support of the Blackwell 2.0 architecture to ensure that viewport performance remains consistent regardless of the software being used. Using this hardware means you spend less time troubleshooting driver compatibility or searching for specific plugin fixes and more time finishing projects. It functions as a reliable workhorse that stays out of the way so the focus remains on the output rather than the hardware limitations.

The 16GB of GDDR7 memory serves as a clear boundary between a standard computer and a serious workstation. High-resolution video editing and 3D modeling can quickly hit a memory ceiling that causes the entire interface to become sluggish. This VRAM buffer provides enough space to manage heavy color grading or dense geometry without the system struggling to keep up with user input. The 256-bit bus and 960 GB/s bandwidth ensure that scrubbing through high-bitrate footage feels snappy and immediate rather than sticky. This throughput is essential for maintaining a fluid workflow when jumping between different creative applications or handling high-resolution assets.

For creators working with modern codecs from high-end cameras, the media engine on this card provides significant relief by handling demanding hardware decoding tasks. This allows for a smooth editing experience without the need to generate proxy files even when working with complex 10-bit formats. You can pair this card with a high-core-count processor for heavy rendering tasks knowing the GPU will handle the timeline playback and encoding efficiently. The presence of dual encoders significantly reduces export times, which is a massive advantage when delivering multiple versions of a file under a tight deadline.

  • The 16GB VRAM pool offers a significant safety net for 3D scenes and layered video projects that would overwhelm lesser hardware.
  • Architecture-level support for modern codecs eliminates playback stuttering in professional video editing suites.
  • Dual 9th-generation encoders allow for faster exports and more efficient handling of high-resolution video streams.
  • The 960 GB/s memory bandwidth prevents data bottlenecks when moving large textures or assets into the compute cores.
  • Refined Tensor hardware accelerates AI-driven tools in various creative apps for faster masking and generative tasks.

If your work involves local AI development or utilizing tools that rely on specific precision formats, the 5th-generation Tensor cores are a primary factor in choosing this model. These cores allow for running more complex models within the 16GB footprint, which effectively extends the longevity of the machine for development work. This is a significant shift because the hardware is optimized to handle these specific mathematical instructions with great efficiency to save hours of processing time. This card provides a polished and reliable path for anyone who relies on professional libraries and rendering engines to meet their daily goals.

GeForce RTX 5070 Ti
Productivity Analysis:

While this hardware dominates high-resolution gaming, moving into a professional workspace shifts the focus toward reliability and thermal endurance. In a workstation environment, the Blackwell architecture moves from providing entertainment to serving as a tool that handles prolonged rendering loads. The 16GB of GDDR7 memory provides a significant buffer for professional tasks that was often missing in previous mid-tier hardware. If you are working with large texture sets in 3D applications or handling high-resolution video projects, this expanded memory pool helps maintain system stability by providing the necessary space for complex assets to reside without overflowing into slower system memory.

Choosing this hardware also secures access to the CUDA ecosystem, which remains a standard for many industry-standard plugins and rendering engines. This technical foundation means that software updates and professional tools often prioritize stability and performance for this specific architecture. The 896 GB/s memory bandwidth on a 256-bit bus contributes to a responsive experience when navigating complex project timelines. There is a noticeable lack of friction when dragging a playhead across a dense production file, as the hardware keeps pace with your manual inputs rather than forcing a wait for the interface to catch up.

  • Video Processing. Dual ninth-generation encoders provide hardware acceleration for modern codecs like AV1 and high-depth 10-bit formats, which reduces the heavy lifting usually required from the processor.
  • Rendering Efficiency. With 70 dedicated RT cores, the card processes path-tracing calculations significantly faster than its predecessors and allows for more frequent iterations on lighting and materials.
  • Compute Resources. The 43.9 TFLOPS of compute performance drives localized AI tools and denoising features, ensuring these background calculations do not lock up the user interface during heavy use.
  • Data Movement. High memory bandwidth serves as a quiet strength for three-dimensional work, moving massive 8K material files into VRAM quickly enough to prevent the micro-stuttering found on slower memory architectures.

Managing the thermal output of a 300W part is a requirement for maintaining the longevity of the silicon under constant render pressure. When the hardware is engaged in a full production cycle, it generates consistent heat that requires a case with high-volume airflow to prevent the clock speeds from dropping as a safety measure. For a stable build, a high-quality 850W power supply ensures the system has enough headroom to manage power spikes during intense computational bursts. This is a sophisticated component that prioritizes the ability to leave a project running through the night and find it completed without errors in the morning. It handles heavy lifting with a level of competence that justifies its position as a serious production tool for those who rely on their hardware for consistent results.

GeForce RTX 5080
Feature Analysis:

A power draw of 360W makes this card a significant thermal presence that demands a high-volume airflow strategy to prevent heat from soaking into your other components. Placing this hardware into a small or poorly ventilated case will likely lead to higher fan speeds and potential clock speed reductions as the cooling assembly struggles to move air through the densest part of the build. It is a piece of hardware that transforms the internal climate of your system and requires a chassis with enough intake capacity to feed the Blackwell 2.0 architecture a constant supply of fresh air. You are essentially building around a high-performance engine that needs a wide open exhaust path to maintain its efficiency over long sessions.

While the base specification suggests a 750W power supply, you should actually look toward an 850W unit to provide the electrical stability needed for the rest of your system components during intense workloads. This ensures the power supply operates within a more efficient curve and reduces the likelihood of fan noise becoming intrusive when the GPU hits its peak draw. The reliance on a single 16-pin connector means that cable management becomes a central part of the installation process because these high-bandwidth cables require careful routing. You must ensure there is enough clearance between the edge of the card and your side panel to allow for a natural curve in the power lead rather than a sharp or forced bend. A wide modern enclosure or a vertical mounting bracket can help manage these physical constraints while keeping the connector secure.

  • The PCIe 5.0 x16 interface provides the maximum available bandwidth for modern motherboards to ensure no communication lag between the GPU and the rest of the system.
  • A 16GB VRAM pool offers a comfortable amount of room for high-resolution textures in 4K environments without the risk of asset swapping or stuttering.
  • Native support for the Blackwell 2.0 architecture includes 5th-generation Tensor hardware designed for high-efficiency mathematical processing in local AI tasks.
  • The 360W typical power draw requires a dedicated cooling solution with multiple fans or a high-surface-area radiator to manage the thermal output effectively.
  • Architecture-level refinements enable the use of newer precision formats that allow larger data sets to fit within the physical memory limits of the card.

Integrating this card into a build means acknowledging the specific physical and electrical requirements that come with high-tier enthusiast hardware. It is not an ideal candidate for a simple drop-in upgrade for older, more compact machines that lack the power delivery or the internal volume for proper heat dissipation. Success with this model depends on a holistic approach where the power supply and the case airflow are treated with the same priority as the card itself. When these environmental factors are handled correctly, the hardware provides a stable and consistent foundation for clear 4K visuals and demanding professional projects without the friction of thermal or electrical instability.

GeForce RTX 5070 Ti
Feature Analysis:

Managing the 300W thermal output of the GeForce RTX 5070 Ti constitutes the primary build challenge for any mid-to-high tier enclosure. This Blackwell silicon generates concentrated heat that requires a case with high-volume airflow and multiple intake fans to prevent the hardware from dialing back its clocks during heavy use. While the base minimum power specification sits at 700W, a high-quality 800W power supply provides the necessary electrical buffer to handle sudden spikes in demand without triggering a system shutdown or causing long-term component fatigue. The card utilizes a single 16-pin power connector, which requires a firm and fully seated connection to ensure stable power delivery and long-term reliability across various load cycles.

The 16GB of GDDR7 memory acts as a safety net against the texture-heavy demands of modern high-resolution gaming and professional creative suites. Having this capacity on a 256-bit bus prevents the visual hitches and asset pop-in that can occur when a GPU is forced to cycle data out of its local buffer. Because the card supports the PCIe 5.0 x16 interface, it communicates at the highest possible speeds with modern motherboards, though it maintains full compatibility with older hardware generations. You are investing in a sophisticated hardware environment that demands quality power and cooling to maintain its performance floor over years of use.

  • The 300W typical power draw exerts significant pressure on internal case temperatures and requires a thoughtful fan curve.
  • A 16GB memory buffer ensures the card remains comfortable at high resolutions where smaller 12GB capacities might require compromises.
  • Native PCIe 5.0 x16 support provides a wide lane for data movement on the latest platform architectures.
  • The MSRP of $749 positions this hardware as a serious investment for those who prioritize architectural efficiency over budget-tier alternatives.
  • Transitioning to the 16-pin power standard simplifies cable management in modern ATX 3.1 builds but requires careful clearance for the cable bend.

A build featuring this hardware succeeds when the environment matches the sophistication of the silicon. It is not a component for cramped cases with poor ventilation because of the thermal requirements of the Blackwell architecture. Once you have resolved the airflow and power supply requirements, the card operates with a level of stability that allows you to focus on the task at hand rather than troubleshooting hardware limits. It represents a modern approach to power-dense computing where the quality of your cooling solution directly influences the consistency of your experience.

GeForce RTX 5080
Full Tech Specs:
Feature Specification
Model GeForce RTX 5080
MSRP $999
Release Date 2025-01-30
Manufacturer NVIDIA
Memory Size 16 GB
Memory Type GDDR7
Memory Bus 256 bit
Memory Clock 1875 MHz
Memory Bandwidth 960.0 GB/s
Base Clock 2295 MHz
Boost Clock 2617 MHz
Shading Units 10752
Ray Tracing Cores 84
TMUs 336
ROPs 112
Pixel Rate 293.1 GPixel/s
Texture Rate 879.3 GTexel/s
Compute Power (FP16) 56.3 TFLOPS
Compute Power (FP32) 56.3 TFLOPS
Compute Power (FP64) 879.3 GFLOPS
Architecture Blackwell 2.0
Process Size 5 nm
Interface PCIe 5.0 x16
Power Connectors 1x 16-pin
TDP 360 W
Suggested PSU 850 W
GeForce RTX 5070 Ti
Full Tech Specs:
Feature Specification
GPU Model GeForce RTX 5070 Ti
MSRP $749
Release Date 2025-02-20
Chipset Manufacturer NVIDIA
Memory Size 16 GB
Memory Type GDDR7
Memory Bus 256 bit
Memory Clock 1750 MHz
Memory Bandwidth 896.0 GB/s
Base Clock 2295 MHz
Boost Clock 2452 MHz
Shading Units 8960
Ray Tracing Cores 70
TMUs 280
ROPs 96
Pixel Rate 235.4 GPixel/s
Texture Rate 686.6 GTexel/s
Compute Power (FP16) 43.9 TFLOPS
Compute Power (FP32) 43.9 TFLOPS
Compute Power (FP64) 686.6 GFLOPS
Architecture Blackwell 2.0
Process Size 5 nm
Interface PCIe 5.0 x16
Power Connectors 1x 16-pin
TDP 300 W
Suggested PSU 800 W

Final Verdict

The GeForce RTX 5080 stands as the superior overall performer because it delivers approximately 10 percent higher rasterization performance and better ray tracing efficiency than the GeForce RTX 5070 Ti. This clear lead is built upon a hardware advantage including 10,752 shading units compared to the 8,960 found in its sibling. While both cards feature 16GB of GDDR7 memory, the GeForce RTX 5080 utilizes a faster memory clock resulting in 960 GB/s of bandwidth. This ensures that the card handles complex textures and heavy data loads with less friction during intense gaming sessions or when processing massive datasets in professional applications.

  • Architecture and Compute: The GeForce RTX 5080 offers 56.3 TFLOPS of compute power whereas the GeForce RTX 5070 Ti provides 43.9 TFLOPS. This allows for faster AI processing and improved stability in heavy local workloads.
  • Power and Efficiency: Both cards use the same Blackwell architecture and 1x 16-pin power connector, but the GeForce RTX 5080 scales better for high fidelity settings despite its slightly higher cooling requirements.
  • Feature Support: Since both belong to the same generation, you get access to identical technologies like 9th-gen encoders and advanced frame generation, but the GeForce RTX 5080 has significantly more hardware resources to leverage them.

Buy GeForce RTX 5080 if you want the fastest available option in this bracket for demanding ray tracing and professional rendering tasks at high fidelity. Buy GeForce RTX 5070 Ti if you want to save significant money at launch MSRP while still getting 16GB of VRAM and the latest architecture for high refresh gaming. The $749 MSRP of the GeForce RTX 5070 Ti makes it a practical choice for most users, but the GeForce RTX 5080 is the undeniable winner for pure power at $999 MSRP.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.