GeForce RTX 5090 vs GeForce RTX 4090

Winner:
GeForce RTX 5090
Main Difference:
GeForce RTX 5090 offers 32GB GDDR7 memory and superior Blackwell 2.0 architecture.
Page Summary:
GeForce RTX 5090 wins by providing a massive 32GB memory buffer and significantly higher bandwidth, outclassing the older flagship for high-end rendering and advanced gaming tasks.
Last updated:
January 31, 2026

The Essentials

GeForce RTX 5090

MSRP:
$1,999
See Current Price
Spec Sheet:
Core Count:
21760
Thread Count:
Base Clock:
2017 MHz
Boost Clock:
2407 MHz
Integrated Graphics:
VRAM:
32.0 GB
L3 Cache:
32.0 GB
TDP:
575 W
Socket:
512 bit
Bus Width:
512 bit
Release Date:
2025-01-30
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
100
100
1440p
100
100
4K
100
100
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

GeForce RTX 4090

MSRP:
$1,599
See Current Price
Spec Sheet:
Core Count:
16384
Thread Count:
Base Clock:
2235 MHz
Boost Clock:
2520 MHz
Integrated Graphics:
VRAM:
24.0 GB
L3 Cache:
24.0 GB
TDP:
450 W
Socket:
384 bit
Bus Width:
384 bit
Release Date:
2022-09-20
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
95.2
97.7
1440p
88.6
87.1
4K
80.3
79.3
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

GeForce RTX 5090
Gaming Analysis:

The GeForce RTX 5090 represents a massive leap in headroom for high-resolution setups. It makes standard high-definition displays feel like an afterthought because it provides a level of power that allows for fluid motion across the most demanding environments. If you are playing on a top-tier display, this card manages to maintain crisp, stable movement while avoiding the jagged edges or hitching that can occur when hardware gets pushed to its limit. It serves as a flagship enthusiast choice that stays smooth even when the onscreen action becomes incredibly crowded and chaotic.

A massive 32GB VRAM buffer paired with a 512-bit bus effectively removes the limitations that lead to blurry textures or sudden stutters. While cards with smaller memory pools might experience hitches when loading expansive open worlds, the GDDR7 memory on this card moves data with enough speed and volume to handle ultra-quality assets without struggle. You can dial up every setting and expect the system to handle the workload without the memory pressure warnings that sometimes affect older high-end hardware.

  • Ray Tracing Performance: With 170 dedicated RT cores, the Blackwell 2.0 architecture handles complex lighting and sharp reflections with ease. It turns heavy path-traced scenes into a responsive experience where shadows and light behave naturally.
  • DLSS Support: This hardware makes use of advanced upscaling and frame generation to ensure that even the most brutal titles remain playable at high resolutions. It provides a significant boost to responsiveness when you want to maximize visual fidelity.
  • Thermal Management: Despite the high power requirements, the physical design is built to manage heat density effectively across the massive cooling array. The card is substantial and heavy, but it stays relatively cool and quiet during extended sessions compared to less efficient designs.
  • Memory Bandwidth: The move to a wider bus and newer memory standards means the card is rarely bottlenecked by data throughput. This ensures that assets load instantly and frames remain consistent even as you move between different environments in a game.

Fitting this card into a build requires a high-quality 1050W power supply and a case with significant internal clearance. It is a physically large component that will occupy a great deal of space and it usually justifies the use of a support bracket to protect your motherboard from its weight. This is a choice for those who want a system built around a single, massive core component that handles any modern title at the highest possible settings. Its launch MSRP of $1,999 reflects its position as a specialized piece of hardware for those who want to avoid any compromise in visual quality.

GeForce RTX 4090
Gaming Analysis:

This hardware acts as a visual powerhouse for high-resolution gaming, tackling the dense pixel counts of 4K with a level of composure that typically makes 1440p feel like a light workload. While many cards find themselves struggling to maintain fluid motion at 3840 x 2160, this unit stays responsive across nearly any title you load. It serves as the definitive pairing for high-end 4K displays where standard silicon often begins to stutter or drop frames.

The 24 GB of GDDR6X memory provides a massive buffer for texture quality, allowing you to maximize every slider and use high-resolution texture packs without hitting a hardware wall. In modern games that demand heavy memory resources, you avoid the hitching or asset pop-in that can impact cards with 8GB or 12GB capacities. It offers enough headroom to ensure that your experience remains smooth even as upcoming releases push for more VRAM usage.

  • Ray tracing performance is a core strength of the Ada Lovelace architecture, utilizing 128 dedicated cores to process complex lighting and reflections so efficiently that high visual fidelity rarely compromises playability.
  • The 384-bit memory bus sustains a wide data path, which helps prevent the bandwidth limitations that can lead to frame time spikes during intense on-screen action.
  • DLSS 3 frame generation provides a tool to keep movement fluid in massive open-world environments where the simulation might otherwise be limited by CPU throughput.
  • At 1440p, the card has so much performance overhead that it often waits on the rest of the system to catch up before it reaches full utilization.

Engaging heavy features like path tracing in demanding titles does not turn the screen into a slideshow. Where previous generations often struggled with the latency and visual artifacts of these settings, this hardware maintains a sense of immediate response. It is a rare piece of technology that allows you to move past the settings menu and simply focus on the game. To support this tier of hardware alongside a capable processor, a 1000W power supply is recommended for stable operation.

GeForce RTX 5090
Productivity Analysis:

While the gaming capability of this hardware is undeniable, the true strength of the GeForce RTX 5090 lies in how it functions as a heavy duty tool for professionals and creators. Transitioning from entertainment to a high pressure production environment reveals that the real value of the flagship Blackwell 2.0 architecture is the massive 32GB pool of GDDR7 memory. This enormous buffer acts as a safety net for those working with complex 3D geometry or high resolution video timelines that would cause lesser hardware to struggle or require assets to be moved to slower system RAM. You can load massive texture sets and millions of polygons without the hesitation or technical limitations that typically disrupt a fluid creative process.

The 512-bit memory bus provides a wide path for data that prevents the system from feeling sluggish when scrubbing through high bitrate video or navigating dense architectural visualizations. Choosing this hardware is often a decision based on the reliability of the established CUDA ecosystem because professional deadlines rarely leave room for software compatibility issues. When running local large language models or utilizing tools for generative tasks, the fifth generation Tensor cores handle complex math with a level of speed that makes previous enthusiast hardware feel noticeably dated. It is a workstation grade component that happens to share a lineage with consumer products, making it a viable insurance policy against memory related errors during critical renders.

  • Enhanced Render Throughput: The 170 dedicated RT cores are designed for high speed viewport performance which means you get clean and accurate previews of lighting and shadows in seconds rather than waiting for long processing cycles.
  • Superior Data Bandwidth: With a memory bandwidth of 1790 GB/s, the card moves data with enough volume to ensure that texture heavy projects and 8K video files do not create a bottleneck during ingestion or playback.
  • Multi Engine Encoding: The presence of multiple dedicated hardware encoders allows for the simultaneous processing of high quality video exports and can significantly reduce the time spent waiting for a project to finish.
  • Advanced Compute Performance: The architecture provides massive tflops of processing power across its 21760 shading units which allows for rapid noise reduction and complex physics simulations that usually require server grade equipment.
  • Hardware Requirements: This is a heavy and power hungry component that demands a high quality 1050W power supply and a case with enough airflow to manage the heat generated during a marathon export or bake.

There is an unavoidable physical reality to using a card this powerful because it generates a significant amount of heat that can warm up a small office during intense workloads. Building a system around this GPU requires a commitment to a high quality infrastructure of power delivery and cooling to ensure the hardware remains stable under constant load. It represents a significant investment with an MSRP of $1,999, but for those whose income depends on render times and project stability, the cost is often justified by the hours saved and the frustration avoided. It remains a specialized piece of equipment for those who refuse to compromise on the speed or scale of their professional output.

GeForce RTX 4090
Productivity Analysis:

While the hardware is exceptional for high-resolution entertainment, its utility in a professional environment shifts from amusement to a practical reduction of downtime. The transition from rendering frames to processing large datasets or complex 3D scenes relies on the heavy internal overhead provided by the Ada Lovelace architecture. It functions as a workstation-grade tool that happens to fit into a consumer-focused gaming system.

The 24 GB of GDDR6X memory acts as an essential foundation for anyone handling architectural visualization or intricate textures that would overwhelm lesser hardware. When working with professional rendering engines, the capacity to keep a massive scene within the dedicated video memory prevents the significant slowdowns that occur when a system is forced to rely on slower system RAM. This buffer allows for a more continuous creative process where you can keep multiple heavy applications open simultaneously without the interface becoming unresponsive or sluggish during a long edit.

  • The inclusion of dual 8th-generation NVENC encoders with AV1 support means that rendering out high-resolution video projects happens with impressive speed, effectively freeing up the system for other tasks sooner.
  • A massive memory bandwidth of 1010.0 GB/s ensures that data travels quickly enough to keep the playback of raw 8K footage feeling fluid rather than disjointed as you scrub through a timeline.
  • The 16384 cores provide a reliable level of support for CUDA-accelerated applications, which remains a key factor for stability when using industry-standard software for animation or 3D modeling.
  • With 82.6 TFLOPS of FP16 compute performance, the card manages local artificial intelligence workloads and heavy computational tasks with a speed that moves projects toward completion much faster than mid-tier alternatives.

Operating this equipment requires an awareness of its physical and thermal demands within a case. The power requirements are substantial, making a 1000W power supply a necessary part of the build to ensure the system remains stable under the persistent load of a long render. It represents a heavy investment in professional efficiency, where the primary return is the time saved by moving past the technical limitations of your hardware. By removing the friction from the production cycle, you can devote your focus to the quality of the project itself rather than managing the settings of your software.

GeForce RTX 5090
Feature Analysis:

A staggering 575W TDP means this card functions much like a high output heater inside your case and it will aggressively saturate the air in any small room during a heavy rendering or gaming session. You are committing to a specific thermal infrastructure that necessitates a high airflow chassis with significant mesh spacing to prevent the heat from lingering around sensitive components. If you attempt to trap this hardware in a restricted glass box without sufficient exhaust, the system will likely struggle to maintain its peak clock speeds as internal temperatures climb. Physical integration is a demanding process that requires you to prioritize heat displacement over almost every other aesthetic consideration to ensure long term stability.

The power delivery requirements represent a significant logistical factor that requires careful planning before you begin the assembly. You should look toward a 1050W power supply to safely handle the electricity demands and ensure the system remains stable under the heavy transient loads common with flagship hardware. Using older cable adapters can lead to unnecessary clutter and potential connection issues, so a native 16-pin cable is the preferred method for supplying the massive amount of current this architecture requires. Modern building with such a power hungry flagship demands a level of electrical scrutiny and cable management that was rarely necessary in previous hardware generations.

  • Memory Headroom: The 32.0 GB GDDR7 buffer serves as the ultimate insurance policy against the memory overflows that cause sudden hitches in high resolution gaming or total crashes in complex 3D production suites.
  • Connection Integrity: Utilizing a single 16-pin power connector simplifies the cable path but requires careful routing to ensure the plug is fully seated and the cable is not bent too sharply near the shroud.
  • Interface Bandwidth: The native PCIe 5.0 x16 interface ensures you are utilizing the maximum data paths available on the newest enthusiast motherboards which can be helpful as textures and assets grow in size.
  • Physical Presence: This is a heavy and substantial component that occupies a significant amount of space, often requiring a dedicated support bracket to prevent the weight from putting stress on the motherboard slot.
  • Thermal Density: The Blackwell 2.0 architecture concentrates a massive amount of power into the silicon, making high static pressure fans a necessity for pushing air through the dense fin stacks of the cooler.

There is a reality to owning this class of hardware that involves managing the environment around the PC as much as the internal components. It is an unapologetic statement of overkill that provides a level of peace of mind for those who simply want to set every slider to the maximum and never worry about technical limitations again. While the $1,999 MSRP positions it as a significant investment, it functions as a workstation grade tool that eliminates the friction often found in high pressure creative or gaming environments. Success with a build of this scale depends entirely on the quality of the supporting parts and your willingness to provide the necessary airflow and power foundation it requires to operate at its full potential.

GeForce RTX 4090
Feature Analysis:

A typical 450W power draw creates a significant thermal reality that demands a serious commitment to case airflow and cooling management. Integrating this much heat density into a standard chassis means you are no longer building a simple desktop but managing a piece of high-performance machinery. While the base specifications suggest an 850W power supply, a 1000W unit is the more stable path to accommodate the sudden power spikes this silicon often produces. This requirement ensures the system remains functional during heavy loads and prevents the abrupt shutdowns that can occur when the hardware pulls maximum current from the rail.

Managing the physical installation involves handling a 16-pin power connector that requires careful routing to maintain a secure and flush connection. The stiffness of the cable and any necessary adapters can create friction in narrower cases where the distance between the card and the side panel is limited. Ensuring a clean, straight seating of the power lead is a vital step for long-term reliability and physical safety. This hardware is physically dominant in size and weight, often requiring a support bracket to prevent the PCB from sagging or putting undue stress on the PCIe slot over time.

  • The PCIe 4.0 x16 interface provides the full available bandwidth of 31.5 GB/s to ensure no data bottlenecks occur between the system and the GPU.
  • A 24 GB VRAM buffer offers vast headroom for high-resolution 4K textures and provides enough capacity to handle complex local AI workloads without the system slowing down.
  • The Ada Lovelace architecture utilizes a 384-bit memory bus to maintain high throughput which keeps frame delivery consistent during visually dense moments.
  • Physical dimensions on many models extend well beyond three slots in width and often exceed 330mm in length, which restricts your choice of compatible mid-tower enclosures.

This is a component that settles into the build as a permanent fixture of your workflow and demands that the rest of the PC matches its tier. Relying on a high-airflow mesh case is essentially mandatory to prevent the internal air temperature from rising to levels that would trigger thermal throttling. If you are willing to solve these power delivery and ventilation challenges before you press the power button, the hardware rewards you with a level of stability that remains unmatched in the consumer market. It is a build choice for those who want to move past the limitations of standard hardware and focus entirely on the output of their machine.

GeForce RTX 5090
Full Tech Specs:
Feature Specification
Name GeForce RTX 5090
MSRP $1,999
Release Date 2025-01-30
Manufacturer NVIDIA
Memory Size 32 GB
Memory Type GDDR7
Memory Bus 512 bit
Memory Clock 1750 MHz
Memory Bandwidth 1790.0 GB/s
Base Clock 2017 MHz
Boost Clock 2407 MHz
Shading Units 21760
Ray Tracing Cores 170
TMUs 680
ROPs 176
Pixel Rate 423.6 GPixel/s
Texture Rate 1636.8 GTexel/s
Compute Power (FP16) 104.8 TFLOPS
Compute Power (FP32) 104.8 TFLOPS
Compute Power (FP64) 1.6 TFLOPS
Architecture Blackwell 2.0
Process Size 5 nm
Interface PCIe 5.0 x16
Power Connectors 1x 16-pin
TDP 575 W
Suggested PSU 1050 W
GeForce RTX 4090
Full Tech Specs:
Feature Specification
Name GeForce RTX 4090
MSRP $1,599
Release Date 2022-09-20
Chipset Manufacturer NVIDIA
Memory Size 24 GB
Memory Type GDDR6X
Memory Bus 384 bit
Memory Clock 1313 MHz
Memory Bandwidth 1010.0 GB/s
Base Clock 2235 MHz
Boost Clock 2520 MHz
Shading Units 16384
Ray Tracing Cores 128
TMUs 512
ROPs 176
Pixel Rate 443.5 GPixel/s
Texture Rate 1290.2 GTexel/s
Compute Power (FP16) 82.6 TFLOPS
Compute Power (FP32) 82.6 TFLOPS
Compute Power (FP64) 1.3 TFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 1x 16-pin
TDP 450 W
Suggested PSU 950 W

Final Verdict

The GeForce RTX 5090 stands as the clear leader for anyone seeking peak performance without compromise. By moving to the Blackwell 2.0 architecture, this card introduces a massive 32GB pool of GDDR7 memory that simply dwarfs what came before. This extra capacity proves essential when working with massive 3D textures or heavy AI training sets that would otherwise hit a wall. While the GeForce RTX 4090 changed the game during its tenure, its 24GB of GDDR6X memory and PCIe 4.0 interface now look like legacy tech compared to the PCIe 5.0 compatible behemoth that is the new flagship.

Hardware enthusiasts will notice that the GeForce RTX 5090 features a much wider 512-bit memory bus, which allows data to move at speeds the older card cannot touch. This bandwidth helps load textures fast and keeps frame rates steady in complex scenes where the GeForce RTX 4090 might finally start to sweat. The transition to a more advanced manufacturing process and a higher count of RT cores makes the GeForce RTX 5090 much faster for lighting effects and ray-traced shadows. It is not just about raw power but about having the headroom to handle whatever comes next in the software world over the coming years. Those sticking with the GeForce RTX 4090 still have a capable card for most modern needs, but it lacks the future-proof nature of the latest connectivity standards and massive frame buffer. Buy GeForce RTX 5090 if you want the absolute highest performance for heavy creative workloads and top-tier gaming setups that require the most memory bandwidth possible. Buy GeForce RTX 4090 if you have a high-wattage power supply already installed and only need a very powerful card for current titles without requiring the latest GDDR7 memory standard or PCIe 5.0 speeds.

  • Architecture: The Blackwell 2.0 design in the GeForce RTX 5090 offers a clear lead in efficiency and raw throughput over the older Ada Lovelace platform.
  • Memory: 32GB of GDDR7 on a 512-bit bus provides a massive edge for high-resolution texture work compared to the 24GB found on the GeForce RTX 4090.
  • Connectivity: Support for PCIe 5.0 and newer display standards ensures the GeForce RTX 5090 stays relevant as monitor and motherboard technology continues to advance.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.