Intel Arc B570 vs Intel Arc A580

Winner:
Intel Arc B570
Main Difference:
Newer architecture with more VRAM for better efficiency and stability
Page Summary:
Intel Arc B570 is the superior choice because it utilizes the refined Xe2-HPG architecture and provides a larger memory buffer than the Arc A580.
Last updated:
January 31, 2026

The Essentials

Intel Arc B570

MSRP:
$219
See Current Price
Spec Sheet:
Core Count:
2304
Thread Count:
Base Clock:
2500 MHz
Boost Clock:
2500 MHz
Integrated Graphics:
VRAM:
10.0 GB
L3 Cache:
10.0 GB
TDP:
150 W
Socket:
160 bit
Bus Width:
160 bit
Release Date:
2025-01-16
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
30.3
30.3
1440p
24.7
23.9
4K
9.6
9.6
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Intel Arc A580

MSRP:
$179
See Current Price
Spec Sheet:
Core Count:
3072
Thread Count:
Base Clock:
1700 MHz
Boost Clock:
2000 MHz
Integrated Graphics:
VRAM:
8.0 GB
L3 Cache:
8.0 GB
TDP:
175 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2023-10-10
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
24.2
24
1440p
19.5
16.2
4K
15.4
10.6
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

Intel Arc B570
Gaming Analysis:

The Intel Arc B570 delivers strong results as a high-value choice for standard resolutions, though it can manage higher pixel counts if you are willing to adjust expectations. It is not meant for heavy workloads at 4K where performance drops off significantly. At 1080p, the experience is fluid and consistent across modern releases, representing a serious step up in performance for its class. While the Xe2-HPG architecture is more refined than previous efforts, you still need to be aware that Intel hardware relies heavily on steady driver updates to stay competitive.

The 10GB VRAM configuration serves as a capable middle ground between cramped budget options and high-end enthusiast cards. This extra memory headroom helps prevent the stuttering and hitching that often occur when 8GB cards run out of space for textures. With a 160-bit memory bus, the card maintains enough bandwidth to handle fast motion without the underlying data pipeline becoming a bottleneck. You likely will not have to drop down to lower texture settings just to keep the image stable during intense scenes.

Ray tracing performance is a standout trait for any card at this MSRP, though you should keep your settings realistic. The dedicated ray tracing cores within the Battlemage architecture handle lighting calculations with more efficiency than typical entry-level hardware, often competing comfortably with standard industry alternatives in heavy lighting scenarios. Reflections and shadows appear more natural without making the game feel sluggish. At 1440p, the demand of these effects grows, making XeSS upscaling a helpful tool for keeping the visuals smooth and responsive.

  • Standard resolution gaming is excellent, frequently rivaling more expensive hardware.
  • Higher resolutions are reachable but usually require upscaling or lower presets to maintain a steady feel.
  • The Xe2-HPG architecture shows strong compatibility with modern DirectX 12 and Vulkan APIs.
  • Legacy DirectX 11 software may occasionally experience uneven frame delivery as drivers manage the CPU overhead.
  • The 10GB of GDDR6 memory avoids the texture popping or visual glitches common on 8GB cards.
  • Intel XeSS 2 provides significant fluidity improvements through frame generation technology.
  • A power supply of at least 550W is recommended to ensure the system remains stable under heavy gaming loads.
Intel Arc A580
Gaming Analysis:

The Intel Arc A580 is a 1080p gaming card that serves as a competent entry point for budget builds but lacks the raw muscle to maintain fluidity at higher resolutions. While it sits on a fast 256-bit memory bus that helps it stay responsive, the Xe-HPG silicon is tuned for standard high-definition monitors. If you try to push this card to run 1440p on modern titles, you will likely encounter chugging frame rates and a loss of responsive snap during fast motion. It is a solid choice for the 1080p gamer who wants high frame rates in esports titles, but it finds its limit when you step into heavier open-world environments.

With 8GB of GDDR6 VRAM, your texture budget requires careful management because that amount is becoming the floor for modern software. You can expect crisp visuals on High settings in older titles, but in newer games, you will likely need to drop textures to Medium to avoid stuttering or sudden hitches when you turn a corner in-game. The card has the bandwidth to move data quickly across its wide bus, but the memory capacity is not deep enough for the massive uncompressed texture packs common in current releases.

  • The standard rasterization performance at 1080p is its strongest suit, delivering smooth movement in Vulkan-based games where the Intel drivers are most mature.
  • Ray tracing performance is surprisingly competent for a budget card, holding its ground well thanks to 24 dedicated Ray Tracing units.
  • Using Ray Tracing at 1080p is viable if you pair it with XeSS upscaling, which helps clean up the image and recover performance lost to complex lighting calculations.
  • At 1440p, the performance drops off significantly, particularly in DirectX titles where the driver overhead still causes inconsistent frame times.
  • While the card handles reflections and shadows better than many rivals in its class, it enters slide-show territory when pushed to 4K resolutions.

You must keep the power draw in mind because this card is remarkably thirsty for the level of performance it provides. It pulls over 200W during intense gaming sessions, which is significantly more heat and electricity than some competing cards. This means your case will get warmer and your fans will likely spin louder than they would with a more efficient rival. To support this card and a standard system, a 550W power supply is a sensible minimum. It is a capable, gritty performer for the 1080p enthusiast, but the high power draw and 8GB VRAM limit mean it is a tool for the present rather than a long-term investment. Given its launch MSRP of $179, it offers a specific path into modern features for those who do not mind the trade-off in efficiency.

Intel Arc B570
Productivity Analysis:

While the hardware handles gaming with ease, the Intel Arc B570 offers a different experience when you move into professional software where stability and driver maturity take center stage. This card provides the hardware muscle for creative tasks, but the software side remains in a state of ongoing development. You can ignore occasional friction in a match, but a crash during a long render is much harder to overlook. The Xe2-HPG architecture is built for modern standards, yet anyone using this for work must accept that Intel is still refining the software support required for a perfectly fluid professional workflow.

The 10GB VRAM buffer offers a helpful middle ground compared to the more common 8GB found on many entry-level cards. This extra space prevents the immediate slowdowns that happen when a video timeline or a 3D scene exceeds the memory of the card. With a 160-bit memory bus and 380 GB/s of bandwidth, scrubbing through high-resolution footage feels responsive rather than sticky or sluggish. If you push into massive 3D environments with heavy textures, you will eventually reach a limit where the system begins to struggle, but for standard 1440p projects, the ceiling is comfortable. It provides just enough breathing room to keep your focus on the work instead of managing hardware limits.

Intel includes a capable media engine featuring hardware support for modern standards like AV1 and VVC. This allows the GPU to process heavy exports and high-bitrate broadcasts without placing the entire load on your CPU. It handles complex chroma subsampling that often causes issues for older hardware, making it a strong choice for video editors working with modern camera files. You lose the specific software optimizations found in the CUDA ecosystem, which can be a hurdle if your specific tools are built around that industry standard. However, the raw compute performance and XMX engines make it a credible contender for AI-assisted tools like noise reduction and automated masking in common editing suites.

  • The 10GB of VRAM provides a small but helpful safety margin for complex timelines and higher-resolution texture work.
  • Hardware support for VVC and AV1 makes the card a strong choice for modern video encoding and archival tasks.
  • High memory bandwidth ensures that navigating through uncompressed media files remains smooth and predictable.
  • The 550W power supply requirement ensures the system has enough headroom for stability during the long hours of a heavy render.
  • Dedicated XMX engines provide a significant boost for localized AI tasks like upscaling and smart masking in creative applications.
Intel Arc A580
Productivity Analysis:

While the gaming side of the Intel Arc A580 is defined by 1080p stability, shifting to a creative timeline introduces a different set of physical demands on the Xe-HPG architecture. Moving from short bursts of activity into a workstation role requires looking at how the silicon handles sustained data throughput during a long render or a complex 3D export. The high power draw mentioned previously carries over into productivity tasks, where the card pulls significant wattage that produces noticeable heat. You will likely hear the cooling fans working hard to keep temperatures under control when you are grinding through a project. It is a loud, functional experience that reminds you this hardware was built for raw capability rather than thermal silence.

The 8.0 GB VRAM buffer behaves as a hard border for your creative projects. If you are working on standard high-definition video projects or basic 4K cuts, the card feels responsive and manages the assets without much friction. The moment you start stacking heavy color grades or noise reduction, you might encounter significant system hitching because that memory capacity is the floor for modern professional software. However, the 256-bit memory bus provides a genuine advantage many budget contenders lack. With 512.0 GB/s of bandwidth, scrubbing through the footage you can fit into memory feels strikingly snappy. It avoids the sticky lag often found on cards with narrower interfaces and moves data with the confidence of a much heavier component.

  • The hardware media engine is a primary reason to consider this card for a work build, as it offers full AV1 encoding and decoding features that are often missing from older budget hardware.
  • Intel QuickSync allows a compatible processor and this discrete card to share the workload during exports, though you must occasionally manage driver updates to ensure professional software recognizes the hardware correctly.
  • The 24 Ray Tracing cores are surprisingly functional for 3D modeling in viewport environments, holding their ground well when handling light and shadow calculations.
  • With 24.6 TFLOPS of FP16 performance, the card can serve as a budget entry point for local AI tasks or neural filters that do not exceed the onboard memory capacity.
  • Scientific simulations needing specialized precision are not the focus here, as the hardware is clearly tuned for creative media and visual tasks rather than high-level research.

Choosing this hardware for a professional environment means accepting a specific kind of ecosystem friction. You are forgoing the longstanding stability of established competitors, so you must be comfortable with the occasional driver hiccup or the need to check compatibility before updating your software. If your income depends on hitting a strict deadline every few hours, the occasional instability might be an issue. For a freelance editor on a budget or a student who needs powerful hardware encoding for video projects, the Arc A580 is a calculated choice. It provides professional-grade video tools in a package that requires a steady hand to manage the high power consumption and evolving driver landscape. Given its launch MSRP of $179, it represents a specific path into advanced media features for those who prioritize bandwidth over a larger memory pool.

Intel Arc B570
Feature Analysis:

A typical thermal design power of 150W makes the Intel Arc B570 relatively simple to cool, though build stability depends on more than just the temperature of the chip. While the base specification suggests a 450W power supply, aiming for a 550W unit provides a necessary buffer for transient power spikes and system wide efficiency. Running a power supply too close to its maximum capacity often leads to increased fan noise and unnecessary heat buildup within the case. Maintaining this overhead ensures your internal components receive clean power during the rapid fluctuations of modern gaming and creative software.

The PCIe 4.0 x8 interface presents a specific consideration for anyone installing this card into an older motherboard. Because it utilizes half the physical lanes of a full x16 slot, users on PCIe 3.0 platforms will effectively operate with reduced bandwidth. This limitation rarely causes issues in every title, but it can lead to inconsistent frame delivery or stuttering in games that aggressively move data between the system memory and the 10GB of VRAM. You should also verify that your system supports Resizable BAR, as this specific Intel architecture relies on that feature to function at its intended performance level.

You can avoid the complexities of modern high end power standards because this card relies on a single 8-pin connector. There is no requirement for specialized adapters or the stiffer cables associated with newer power specifications, which helps keeps cable management straightforward and reliable. The 10GB of GDDR6 memory sits on a 160-bit bus, providing a total of 380 GB/s bandwidth to keep textures loading smoothly at 1080p and 1440p. While you are adopting a newer software ecosystem that is still maturing, the hardware itself follows a traditional and user friendly installation path that fits easily into most standard mid sized cases.

  • The 150W power draw helps maintain a quiet system environment by putting less cooling pressure on your case fans.
  • A standard 8-pin power connector ensures compatibility with most existing power supplies without needing extra adapters.
  • Using a 550W power supply provides the stability needed to handle the momentary power fluctuations common in the Xe2-HPG architecture.
  • The 10GB VRAM configuration offers a meaningful safety margin over older 8GB cards when playing open world games with high resolution textures.
  • Support for the VVC codec and AV1 encoding provides a future proof pathway for high quality video playback and streaming tasks.
Intel Arc A580
Feature Analysis:

A typical 175W TDP rating suggests a mid-range thermal profile, but the physical reality of the Xe-HPG architecture is that it pushes considerable heat into your chassis during sustained use. This power demand is high for an entry-level part, meaning your case airflow needs to be active rather than passive to prevent the ambient temperature from climbing. While the official minimum specification suggests a 450W power supply, a 550W unit is the safer choice to handle the power spikes common with these Alchemist chips. Using a power supply with a bit more breathing room ensures the system remains stable when the hardware is under full load.

The 8.0 GB VRAM capacity serves as a strict boundary for your visual settings, acting as a ceiling that stays relevant throughout the life of the build. In modern titles, this amount of memory is the baseline, often requiring you to stay at 1080p and avoid the highest texture presets to maintain a smooth experience. The 256-bit bus helps move data with significant speed, yet the physical capacity is shallow enough that 1440p textures can quickly lead to stuttering. It is a build designed for the standard high-definition era, requiring a user who is comfortable managing settings rather than set-and-forget high-resolution gaming.

  • The card utilizes two standard 8-pin power connectors, which avoids the need for specialized adapters and ensures compatibility with traditional power supply cables.
  • A full PCIe 4.0 x16 interface provides the maximum available bandwidth, ensuring the card does not suffer from the performance penalties sometimes found on budget hardware with fewer lanes.
  • The hardware is built on the Xe-HPG architecture, which introduced dedicated silicon for complex tasks like ray tracing and AI-enhanced upscaling.
  • Integrating this hardware into your build requires a motherboard that supports Resizable BAR, as the architecture relies heavily on this feature to function at its intended speed.
  • Early software hurdles have largely been addressed through consistent updates, though the platform still requires a more hands-on approach to driver management than established rivals.

Building with the Arc A580 means accepting a specific kind of technical friction in exchange for its unique feature set. You are choosing a path that prioritizes raw bandwidth and modern architecture over the polished, plug-and-play nature of more expensive ecosystems. Because it draws a notable amount of electricity for its performance class, the noise and heat from your cooling fans will be a constant presence during heavy sessions. It serves as a gritty, capable entry point into modern computing for those who understand that the 8.0 GB limit and the thermal output are the primary trade-offs for its launch MSRP of $179.

Intel Arc B570
Full Tech Specs:
Feature Specification
Product Name Intel Arc B570
MSRP $219
Release Date 2025-01-16
Manufacturer Intel
Memory Size 10 GB
Memory Type GDDR6
Memory Bus 160 bit
Memory Clock 2375 MHz
Memory Bandwidth 380.0 GB/s
Base Clock 2500 MHz
Boost Clock 2500 MHz
Shading Units 2304
Ray Tracing Cores 18
TMUs 144
ROPs 80
Pixel Rate 200 GPixel/s
Texture Rate 360 GTexel/s
Compute Power (FP16) 23.0 TFLOPS
Compute Power (FP32) 11.5 TFLOPS
Compute Power (FP64) 1.4 TFLOPS
Architecture Xe2-HPG
Process Size 5 nm
Interface PCIe 4.0 x8
Power Connectors 1x 8-pin
TDP 150 W
Recommended PSU 550 W
Intel Arc A580
Full Tech Specs:
Feature Specification
Name Intel Arc A580
MSRP $179
Release Date 2023-10-10
Chipset Manufacturer Intel
Memory Size 8 GB
Memory Type GDDR6
Memory Bus 256 bit
Memory Clock 2000 MHz
Memory Bandwidth 512.0 GB/s
Base Clock 1700 MHz
Boost Clock 2000 MHz
Shading Units 3072
Ray Tracing Cores 24
TMUs 192
ROPs 96
Pixel Rate 192 GPixel/s
Texture Rate 384 GTexel/s
Compute Power (FP16) 24.6 TFLOPS
Compute Power (FP32) 12.3 TFLOPS
Compute Power (FP64) 1.5 TFLOPS
Architecture Xe-HPG
Process Size 6 nm
Interface PCIe 4.0 x16
Power Connectors 2x 8-pin
TDP 175 W
Suggested PSU 550 W

Final Verdict

Choosing the Intel Arc B570 over the Intel Arc A580 represents a significant shift from the first-generation Alchemist hardware to the more refined Battlemage architecture. While the Arc A580 launched with an MSRP of $179 and featured a wider memory bus, it suffered from high energy consumption and was built on an older 6 nm process. The Intel Arc B570, which arrived with a $219 MSRP, uses a more efficient 5 nm process that allows it to achieve much better performance per watt while simplifying power requirements. The architectural leap to Xe2-HPG means the B570 handles modern rendering tasks and ray tracing with far more grace than its predecessor.

Memory capacity is another area where the Intel Arc B570 pulls ahead clearly. It features 10GB of GDDR6 memory, which provides a much needed safety margin compared to the 8GB found on the Arc A580. Having that extra VRAM helps prevent hitching and texture loading issues as games become more demanding. Even though the Arc A580 has a higher raw shading unit count, the B570 makes better use of its internal resources through improved dispatch logic and better driver integration. The move to a single 8-pin power connector on the B570 also makes it much easier to integrate into budget builds compared to the dual 8-pin requirement of the older card.

  • Architecture: The transition to Battlemage brings better efficiency and faster clock speeds that help overcome the Arc A580's wider bus width.
  • Memory: A 10GB buffer on the B570 is a critical upgrade over the 8GB limit for modern software.
  • Power: The B570 is notably easier to power and run cool.
  • Buy Intel Arc B570 if you want a modern card with extra memory and better efficiency than the first-gen Intel GPUs.
  • Buy Intel Arc A580 if you are strictly limited by a $179 MSRP budget and do not mind the older architecture and higher power draw.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.