Intel Core i9-14900KS vs AMD Ryzen 5 5600

Winner:
AMD Ryzen 5 5600
Main Difference:
Vastly lower power draw and entry price against 24 cores and high clocks.
Page Summary:
AMD Ryzen 5 5600 is the sensible choice for most users because it offers a balanced gaming experience on an established platform without the extreme cooling or power requirements demanded by the Intel flagship.
Last updated:
January 31, 2026

The Essentials

Intel Core i9-14900KS

MSRP:
$689
See Current Price
Spec Sheet:
Core Count:
24
Thread Count:
32
Base Clock:
3.2 GHz
Boost Clock:
6.2 GHz
Integrated Graphics:
UHD Graphics 770
VRAM:
36 MB (shared)
L3 Cache:
36 MB (shared)
TDP:
150 W
Socket:
Intel 1700
Bus Width:
Intel 1700
Release Date:
2024-03-14
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
1440p
4K
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
79.5
87.5

AMD Ryzen 5 5600

MSRP:
$199
See Current Price
Spec Sheet:
Core Count:
6
Thread Count:
12
Base Clock:
3.5 GHz
Boost Clock:
4.4 GHz
Integrated Graphics:
N/A
VRAM:
32 MB (shared)
L3 Cache:
32 MB (shared)
TDP:
65 W
Socket:
AM4
Bus Width:
AM4
Release Date:
2022-04-20
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
1440p
4K
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
46.7
31.1
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

Intel Core i9-14900KS
Gaming Analysis:

The Intel Core i9-14900KS exists for the enthusiast who demands the highest possible frequency without concern for power draw or thermal requirements. It serves as a final, high-voltage peak for the LGA 1700 platform by pushing binned silicon to a 6.2 GHz boost clock that effectively brute-forces its way through engine bottlenecks. While newer architectures prioritize efficiency, this chip focuses on raw velocity to ensure high-end graphics cards are never starved for instructions. You are choosing this part to minimize frame rate dips and micro-stutters during chaotic gameplay where every millisecond of CPU response counts.

The 36MB L3 cache acts as a high-speed staging area for world geometry and logic, reducing the frequency with which the processor must fetch data from system memory. This shared pool of data helps the chip maintain high performance in simulation-heavy titles where the CPU is constantly calculating complex physics and AI paths for numerous objects simultaneously. Because many game engines still rely on a primary thread to coordinate the render pipeline, the massive 6.2 GHz clock speed ensures the main engine thread stays ahead of the workload. It is a specialized tool for high-refresh gaming where the processor determines the upper limits of visual fluidity.

  • The 6.2 GHz boost clock is a historic out-of-the-box frequency that provides a edge in titles that rely heavily on single-core speed.
  • With 24 cores and 32 threads, the impact from background multitasking is negligible, allowing you to record footage using the Integrated UHD 770 QuickSync engine without taking resources away from the game.
  • Frame-time consistency is a significant benefit here, as the high-binned Raptor Lake-R architecture helps maintain steady pacing for a smoother visual experience during fast camera movements.
  • The LGA 1700 socket is at the end of its lifecycle, making this the final performance ceiling for compatible motherboards.
  • Managing the heat produced by these clock speeds requires a top-tier liquid cooling solution to prevent the chip from downclocking under heavy sustained loads.

Pairing this processor with high-speed DDR5 memory is necessary to fully realize the silicon's potential. The 14900KS is a demanding component that scales well with increased memory bandwidth, and when configured properly, it offers a level of responsiveness that few other chips can match. This is not a choice for the average builder or those focused on value. It is a halo component for those who want to reach the end of the Raptor Lake era with the most powerful displacement possible, ensuring their system remains a top-tier gaming machine as the industry shifts toward different architectural designs.

AMD Ryzen 5 5600
Gaming Analysis:

The AMD Ryzen 5 5600 stands as a capable mid-tier engine for gaming builds that prioritize practical results over chasing hardware records or enthusiast benchmarks. Launched at an MSRP of $199, this processor uses the established Vermeer architecture to provide a consistent foundation for modern titles. It is a choice for the builder who wants their hardware to fade into the background while the graphics card handles the heavy lifting, essentially offering a balanced gaming experience that avoids the high costs of the latest platform shifts.

The gaming performance is defined by its physical makeup and architectural efficiency.

  • The 32 MB of shared L3 cache serves as a vital high-speed storage zone that keeps game data close to the processor cores. This specific layout reduces the time the CPU spends waiting for information from the system memory, which translates directly to better frame pacing and a significant reduction in the micro-stutters that can ruin the feeling of fluid movement in dense open-world environments.
  • A boost clock of 4.4 GHz provides enough single-core punch to manage the complex instructions of modern game engines. While top-tier enthusiast graphics cards might eventually outpace this chip at lower display settings, it maintains a steady enough cadence to keep gameplay responsive and snappy during high-action sequences without sudden hitches or jarring drops in fluidity.
  • The configuration of six cores and twelve threads provides the necessary overhead for a modern gaming environment where background tasks like voice chat or browser tabs are often running simultaneously. Because it operates within a 65W power profile, it achieves this multi-threaded balance without generating excessive heat, making it easy to keep the system quiet and stable during long sessions.
  • Utilizing the mature AM4 socket and DDR4 memory, this chip is part of a platform that has reached a state of peak refinement. It represents a durable option for those who want a reliable system they can build and use for years, as it provides a high level of competence on a socket that supports a wide range of established motherboards.

This processor is a strategic tool for the pragmatic gamer. It avoids the complexities and added costs of newer memory standards while delivering the core performance needed for a smooth experience across a variety of genres. In scenarios where the workload is concentrated on the graphics hardware, this chip provides the necessary instructions with quiet efficiency and leaves the spotlight for the rest of your build.

Intel Core i9-14900KS
Productivity Analysis:

While the gaming performance focuses on peak velocity, the productivity side of the Intel Core i9-14900KS is defined by massive displacement and parallel throughput. With 24 cores and 32 threads, the system maintains a high degree of responsiveness even when heavy backgrounds tasks are active. This architecture treats complex operations like tile-based rendering or large-scale code compilation with a brute-force approach that keeps the interface fluid. You can initiate a long export and continue working across dozens of browser tabs or creative assets without the cursor dragging or the system hitching under the weight of the primary workload.

Applications that prioritize single-thread speed feel exceptionally snappy because of the 6.2 GHz boost clock, which sits significantly higher than typical professional-grade hardware. The 36MB of shared L3 cache keeps essential datasets accessible, ensuring that viewports in design or modeling software remain smooth as project complexity grows. This combination of high frequency and high core count means the processor does not run out of breath during sustained pulls. It is a solution designed to remove bottlenecks by providing enough overhead to handle the most demanding creative pipelines without compromise.

The presence of the Integrated UHD Graphics 770 engine provides a specific advantage for video work through Intel QuickSync technology. This dedicated hardware handles the heavy lifting for H.264 and HEVC 4:2:2 media, which can help in supported apps by smoothing out timeline scrubbing and playback. It functions as a specialized accelerator that works alongside the primary cores to reduce the friction of editing high-bitrate footage. By offloading these specific tasks, the 32 threads are left free to manage the final render and secondary processing, potentially reducing the time spent waiting for progress bars to finish.

  • The 24-core hybrid design uses performance cores for heavy compute tasks while efficiency cores manage the background noise of the operating system to keep your workflow uninterrupted.
  • Intel Deep Learning Boost serves as a hardware-level accelerator for local AI tasks, improving the speed of denoising filters and complex image processing.
  • The high power draw is a direct consequence of this performance ceiling, as the chip can pull well over 300W during heavy multi-core loads.
  • You must use a motherboard from the 600 or 700 series with high-quality power delivery to ensure the processor maintains its 6.2 GHz potential during long sessions.
  • A top-tier liquid cooling solution is a requirement because the heat density of 24 cores at these voltages will lead to thermal throttling without significant cooling capacity.

Thermal management is the defining factor in whether you can access the full potential of this silicon. The heat generated by the Raptor Lake-R architecture at these clock speeds is intense, and the chip will reach its thermal limits quickly if paired with an average air cooler. To get the most out of your $689 MSRP investment, the environment around the CPU must be as robust as the silicon itself. This is a professional-grade tool for users whose time is measured in output, offering the final performance peak for the LGA 1700 platform before the industry adopts newer, more efficiency-focused designs.

AMD Ryzen 5 5600
Productivity Analysis:

While the Ryzen 5 5600 provides a stable foundation for gaming, shifting into professional production environments highlights the specific boundaries of its six core and twelve thread configuration. It functions as a reliable anchor for general office tasks and entry level creative projects, yet it lacks the sheer parallel processing muscle found in higher tier chips designed for heavy rendering. This processor is built for the user who values a responsive system for daily workflows rather than the specialist who requires maximum throughput for high resolution media exports.

When you move from leisure into a demanding productivity pipeline, the architectural strengths and limitations of the Vermeer design dictate your daily experience.

  • The boost clock of 4.4 GHz ensures that the system remains snappy during the bursty workloads common in image editing and general software navigation. Because many creative applications still rely heavily on the speed of a single core for tasks like applying filters or adjusting layers, this chip feels surprisingly agile and avoids the sluggishness often associated with older hardware.
  • The 32 MB of shared L3 cache provides a notable advantage in data heavy tasks like large file compression and certain technical simulations. By keeping more data immediately accessible to the processor, the system reduces the time spent waiting for information to travel from the DDR4 memory, which results in a smoother experience when handling dense spreadsheets or complex archival work.
  • High intensity 3D rendering and long form video encoding are where the hardware begins to face its limits. Since these tasks scale effectively with every available thread, the twelve threads provided here will take longer to finish a complex export compared to chips with higher core counts. It is a capable finisher for hobbyist projects, but professionals might find the wait times a bottleneck for tight production schedules.
  • Operating within a 65W power profile makes this a thermally efficient choice for compact workspaces or quiet home offices. You can maintain a heavy load on all six cores without generating excessive heat, which allows for consistent performance levels during extended sessions without the need for an elaborate or noisy cooling solution.
  • The lack of integrated graphics means that all video or visual processing relies entirely on your dedicated graphics card and the raw calculation power of the Zen 3 cores. Without specialized hardware acceleration blocks and media engines for decoding, certain video timelines may feel less fluid during playback unless the system is balanced with a strong external GPU to handle the heavy lifting.

Ultimately, this processor serves as a practical tool for the pragmatic professional who focuses on photo manipulation, web development, or light video work. It offers a refined balance of speed and efficiency on the mature AM4 platform, providing a stable environment for getting work done without the added complexity of the latest hardware standards. It is a choice for the builder who wants a quiet, dependable machine that handles a variety of tasks with consistent competence.

Intel Core i9-14900KS
Feature Analysis:

Building with this hardware requires an absolute commitment to thermal management because the 150W base TDP is only a starting point for a chip that pushes these frequencies. You are dealing with the most aggressive version of the Raptor Lake-R architecture, which means the heat density within the silicon package is exceptionally high during heavy operation. Without a flagship-tier liquid cooling loop, the processor will frequently hit its thermal ceiling and pull back on those peak clock speeds. This is not a component for compact cases or restrictive airflow setups as the heat rejected into the local environment is substantial enough to impact every other part of the build.

The LGA 1700 platform reaches its definitive performance peak here, offering a final destination for users who started with earlier 12th or 13th Gen systems. While the industry is moving toward newer socket designs, this configuration provides the highest possible ceiling for existing high-end motherboards from the 600 or 700 series. The choice between memory types remains a factor, as the architecture supports both DDR4 and DDR5, though pairing such a powerful processor with anything less than high-speed DDR5 would create a significant throughput bottleneck. It is a specialized build path where the secondary components must be selected to withstand the strain of extreme voltage and heat.

  • The Integrated UHD Graphics 770 serves as a critical troubleshooting tool, allowing you to diagnose system issues or maintain display output if your primary graphics card is removed.
  • Dual memory support for DDR4 3200 and DDR5 5600 provides some flexibility for those migrating parts from older systems, even if the latter is required for peak performance.
  • The 36MB L3 cache is shared across the hybrid core layers, helping to maintain data flow between performance and efficiency cores during complex multitasking sessions.
  • High-quality motherboard VRMs are a necessity to ensure the power delivery remains stable when the 24-core die demands heavy current for sustained workloads.
  • This chip represents the final enthusiast-grade release for the 10 nm process on this specific socket, effectively maximizing the potential of the existing hardware mature ecosystem.

There is no more room for growth on this specific motherboard platform, which makes this an intentional choice to settle into a high-performance bracket for the long term. You are trading future upgradeability for the certainty of owning the fastest version of a mature architecture. Success with this assembly relies on the balance between raw power and the massive cooling infrastructure required to keep it stable. It is a build designed for those who want the prestige of flagship specifications and are willing to manage the logistical and thermal demands that come with the $689 MSRP territory.

AMD Ryzen 5 5600
Feature Analysis:

Building with a processor that operates at a 65W TDP simplifies the physical assembly because it places very little stress on the system thermal environment or the motherboard voltage regulator modules. Because this chip does not include integrated graphics, you must install a dedicated graphics card to get a display output on your monitor. This design choice allows the silicon to focus entirely on its six cores and shared cache, though it means you lack a fallback video source if you ever need to troubleshoot your primary hardware. The reliance on the mature AM4 socket ensures compatibility with a vast range of established 300, 400, and 500 series chipsets, making it a predictable choice for those repurposing older hardware or seeking a straightforward setup process.

The practical reality of maintaining and cooling this hardware reveals a focus on stability and ease of use over time.

  • The low thermal output allows the processor to remain remarkably cool even under a sustained load, which means you can use a wide variety of standard air coolers and still keep fan noise to a minimum.
  • Support for DDR4 memory at a rated speed of 3200 MT/s provides a significant advantage in platform total cost because these modules are widely available and well understood by builders.
  • The 7nm process architecture allows for efficient power draw during daily operation, which reduces the heat soak inside smaller chassis and helps maintain a quiet workspace during long hours of use.
  • Using the AM4 platform means the hardware has reached its final state of refinement, offering a level of BIOS stability and driver maturity that newer or more experimental sockets often lack during their early years.
  • Physical installation is simplified by the lack of complex power requirements or the need for multi-fan cooling arrays, which makes the interior of the build easier to manage and keep clean of dust over several years of ownership.

This chip represents an end of line choice for the AM4 platform, which provides a sense of finality and stability for a workstation or home office PC. While it does not offer the upgrade path of newer sockets, it delivers a high degree of confidence because the hardware and software ecosystems around it have been fully patched and optimized. It is a functional and efficient component for anyone who needs a reliable machine that is easy to build and even easier to maintain without the noise or heat concerns of more aggressive flagship hardware.

Intel Core i9-14900KS
Full Tech Specs:
Feature Specification
Name Intel Core i9-14900KS
MSRP $689
Release Date 2024-03-14
Socket Intel 1700
Cores 24
Threads 32
Base Clock 3.2 GHz
Boost Clock 6.2 GHz
L3 Cache 36 MB (shared)
Integrated Graphics UHD Graphics 770
TDP 150 W
Memory Support DDR4, DDR5
Memory Rated Speed 3200 MT/s (DDR4), 5600 MT/s (DDR5)
Memory Bandwidth Up to 89.6 GB/s
Chipsets Intel 600 Series, Intel 700 Series
Process Size 10 nm
Codename Raptor Lake-R
TJ Max 100°C
AMD Ryzen 5 5600
Full Tech Specs:
Feature Specification
Name AMD Ryzen 5 5600
MSRP $199
Release Date 2022-04-20
Socket AM4
Cores 6
Threads 12
Base Clock 3.5 GHz
Boost Clock 4.4 GHz
L3 Cache 32 MB (shared)
Integrated Graphics N/A
TDP 65 W
Memory Support DDR4
Memory Rated Speed 3200 MT/s
Memory Bandwidth 51.2 GB/s
Chipsets AMD 300 Series*, AMD 400 Series, AMD 500 Series
Process Size 7 nm
Codename Vermeer
TJ Max 95°C

Final Verdict

The AMD Ryzen 5 5600 stands out as the practical winner for the majority of PC builders. While the Intel Core i9-14900KS represents the absolute ceiling of its platform with twenty-four cores and a massive clock speed boost, the reality is that such power is unnecessary for standard gaming. The Intel chip requires a serious investment in high-end cooling and a heavy-duty power supply to manage its high heat output. For a specialized workstation, the Intel Core i9-14900KS has a clear lead in heavy multi-threaded tasks like video rendering, but for a typical gaming setup, those extra cores often sit idle. The AMD Ryzen 5 5600 operates with much better efficiency and fits into a wide variety of affordable motherboards. It provides enough speed to handle modern titles smoothly without the thermal headaches. Choosing the AMD part allows more of your budget to go toward a better graphics card, which is almost always the smarter move for gaming. The Intel chip is a niche product for enthusiasts who want the fastest possible specs regardless of the massive energy draw or the cost of the supporting hardware. Most people will find that the AMD Ryzen 5 5600 does exactly what they need for a fraction of the initial investment.

  • Buy Intel Core i9-14900KS if you are a professional content creator who needs maximum rendering speeds or an enthusiast who wants the highest clock speeds available on the market regardless of power consumption.
  • Buy AMD Ryzen 5 5600 if you are building a balanced gaming PC and want a part that stays cool while delivering a smooth experience in your favorite titles without overspending.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.