Radeon RX 7900 GRE vs GeForce RTX 4060 Ti 16GB

Winner:
Radeon RX 7900 GRE
Main Difference:
Nearly 50% faster gaming performance and double the memory bandwidth for high resolutions.
Page Summary:
Radeon RX 7900 GRE provides nearly 50% better gaming performance and twice the memory bandwidth than its rival, making it the superior pick for high-resolution stability despite its higher power requirements compared to the more efficient GeForce card.
Last updated:
January 31, 2026

The Essentials

Radeon RX 7900 GRE

MSRP:
$549
See Current Price
Spec Sheet:
Core Count:
5120
Thread Count:
Base Clock:
1287 MHz
Boost Clock:
2245 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
260 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2023-07-27
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
62.5
51.5
1440p
54.2
40.4
4K
32.5
32.5
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

GeForce RTX 4060 Ti 16GB

MSRP:
$499
See Current Price
Spec Sheet:
Core Count:
4352
Thread Count:
Base Clock:
2310 MHz
Boost Clock:
2535 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
165 W
Socket:
128 bit
Bus Width:
128 bit
Release Date:
2023-05-18
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
46.1
41.5
1440p
36.7
32
4K
27.6
25.6
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

Radeon RX 7900 GRE
Gaming Analysis:

The Radeon RX 7900 GRE is a high-performance contender that fits into the upper-tier of gaming hardware, offering a massive leap over entry-level parts. Built on the RDNA 3.0 architecture, it provides enough raw power to handle extremely high visual settings at 1440p and can stretch into higher resolutions if you manage your expectations regarding total frame output. It behaves as a balanced middle ground in the lineup, delivering smooth motion in standard gaming without the heat or power demands found in the heaviest flagship silicon.

The 16GB GDDR6 memory buffer is a practical advantage for modern gaming. Many modern titles are increasingly hungry for video memory, and this 16GB ceiling allows you to keep texture quality at maximum without the stuttering or blurry asset loading that can happen on cards with less capacity. This buffer provides significant longevity against the demanding requirements of visual-heavy console ports and complex open-world environments.

  • Standard Gaming (Rasterization): This is where the card is most comfortable. It produces fluid movement across almost any modern title at 1440p. While it can handle 4K, the 256-bit memory bus means performance might tighten in extremely dense scenes compared to larger enthusiast cards.
  • Ray Tracing Performance: With 80 Ray Accelerators, the hardware can handle ray-traced lighting effects, though it remains more demanding than standard rendering. In titles with lighter ray tracing implementations, the visuals remain sharp and playable, but for heavy lighting loads, you will likely need to engage upscaling tools to maintain a steady feel.
  • Upscaling and Frame Generation: You have access to FSR 3 and driver-level Fluid Motion Frames. These features are great for bridging the gap during heavy 4K workloads or when you want the highest possible visual fluidity in fast-paced titles.
  • Memory Tuning: One interesting trait of this card is the ability to adjust memory timings through software. For those comfortable with basic tuning, there is room to tighten up performance and gain a small edge in responsiveness.

The 750W power supply recommendation ensures the card has plenty of headroom for its 2245 MHz boost clock during intense gaming sessions. It is a sensible choice for a build centered on high fidelity and a generous memory overhead, offering a path to enthusiast-level gaming without demanding a specialized high-wattage power environment or a massive chassis. At a launch MSRP of $549, it represents a sturdy investment for high-refresh 1440p setups.

GeForce RTX 4060 Ti 16GB
Gaming Analysis:

The GeForce RTX 4060 Ti 16GB serves as a high-end 1080p card that manages 1440p workloads primarily through the help of frame construction tools. While it handles standard graphics at 1080p with complete fluidity, the hardware shows real signs of strain once you move to higher resolutions. It is best to view this as a premium solution for 1080p players who want to max out every setting without seeing their movement fall into jerky or stuttering territory.

The 16GB VRAM buffer is the standout feature of this specific model, acting as a safeguard against the hitching often found on cards with half that capacity. You can push texture sliders to their highest positions in demanding titles without hitting a memory wall. While the 128-bit bus is a narrow path that limits data speed, the extra capacity ensures your frame pacing remains stable rather than collapsing during scenes crowded with high-resolution assets.

  • 1080p Performance: Crisp and reliable. Expect high responsiveness in competitive shooters and a solid experience in heavy AAA blockbusters.
  • 1440p Performance: Conditional. You will likely rely on DLSS to keep motion fluid in demanding modern titles.
  • 4K Performance: Steep drop-off. Native 4K is taxing for this silicon and usually requires aggressive upscaling that compromises the clarity of the image.
  • Ray Tracing: A heavy lift for the hardware. Turning on intensive lighting effects will impact your performance significantly, so sticking to standard reflections or lighter RT settings is usually the better path for smooth play.
  • Upscaling: The Ada Lovelace architecture provides access to DLSS 3. Frame Generation can make a heavy game feel much more fluid, providing extra longevity as software demands increase.

If you are building for a standard HD monitor and want the freedom to ignore hardware requirement lists for several years, this card fits that role well. However, if you have goals for high-refresh 1440p gaming or want to see ray-traced lighting as a primary feature, the underlying architecture may reach its limits sooner than you might prefer. For a build using this GPU, a 550W power supply is recommended to provide sufficient overhead.

Radeon RX 7900 GRE
Productivity Analysis:

While the hardware is designed to excel in high resolution gaming, its utility for professional tasks is defined by the heavy compute resources packed into its 80 processing units. Moving from gaming to creative work reveals a card that handles dense 3D viewports and complex timelines with steady composure. The RDNA 3.0 architecture provides a massive amount of raw mathematical power that helps maintain responsiveness in specialized software when you are manipulating heavy assets or managing a multi-monitor productivity setup.

The 16GB memory buffer serves as a critical safety net for anyone working with high-resolution textures or multi-layered video projects. Cards with smaller capacities might struggle the moment you load a secondary application or a large data set, but this overhead ensures the system does not immediately stall during an export or a heavy render. Having this much video memory creates a stable foundation for professional workflows that will remain relevant as software requirements continue to climb in the coming years.

  • Rendering and Simulation Performance: The 80 Ray Accelerators assist in hardware-accelerated rendering tasks within applications like Blender, though the specific software translation layer involves different optimization paths than competitors. While it provides excellent speed for traditional rendering, it relies on raw compute strength to power through complicated lighting calculations.
  • Memory Throughput and Bandwidth: With a 256-bit memory bus providing 576 GB/s of bandwidth, the card handles large data transfers with considerable speed. This allows for smooth scrubbing in video editing software where the GPU must quickly fetch and process frames from the buffer to keep up with your editing pace.
  • Precision Compute Tasks: The hardware offers 92 TFLOPS of FP16 performance, which is a major benefit for AI-assisted tools and image processing filters. This raw arithmetic capability allows the card to accelerate modern neural filters and generative tools even without specialized proprietary cores.
  • Modern Video Encoding: Inclusion of hardware AV1 encoding is a significant perk for video professionals and streamers alike. This allows you to produce high-quality exports with efficient file sizes, reducing the strain on your processor and speeding up the final delivery phase of a project.
  • Technical Software Compatibility: In certain engineering and CAD applications like SolidWorks, the architecture often demonstrates a surprising lead in visualization fluidity. It handles the specific viewport instructions of these tools more effectively than many consumer-grade alternatives, making it a viable choice for a dual-purpose workstation and gaming machine.

A 750W power supply is the recommended choice to provide enough energy for the card during heavy sustained workloads. Despite the massive compute potential, it operates efficiently without creating an overwhelming heat signature or excessive noise levels. At its launch MSRP of $549, it stands as a practical option for builders who need a high-end memory buffer and significant processing power for creative tasks without venturing into the extreme price tiers of flagship workstations.

GeForce RTX 4060 Ti 16GB
Productivity Analysis:

While this hardware hits its limit in high-resolution gaming, the perspective shifts for professional tasks where the massive 16GB VRAM buffer becomes a hard requirement for stability. You are paying a premium over the 8GB version because you want to avoid the memory errors that turn a three-hour render into a wasted night. It is about the peace of mind that comes with having enough overhead to keep complex 3D scenes or high-resolution video timelines open without the interface lagging. This specific model provides the stability needed for unoptimized workloads that would simply fail on cards with smaller memory banks.

The 128-bit bus remains a persistent bottleneck that you will likely feel during heavy data transfers or when moving massive texture assets. Scrubbing through complex 4K footage can feel slightly less responsive than on a card with a wider memory path, meaning you are trading raw throughput for total capacity. This compromise is most evident in 3D applications like Blender where the Ray Tracing cores utilize the OptiX API to clear noise from a viewport much faster than many competitors. You are essentially buying into the CUDA ecosystem, which ensures professional apps work without the troubleshooting or missing features that often plague other architectures. It is a predictable choice for anyone who needs their tools to stay out of the way for them to focus on the actual work.

  • Video Production: The dual 8th Gen NVENC engines include hardware AV1 encoding to help creators produce high-quality uploads at lower bitrates without taxing the CPU during the process.
  • AI and Machine Learning: This is one of the most accessible ways to get 16GB of VRAM for local large language model inference and running models with higher parameter counts.
  • 3D Rendering: The 4352 CUDA cores provide respectable throughput for standard rendering, and the extra memory ensures complex scenes with high-resolution textures actually finish rendering rather than failing.
  • Creative Suite: Specialized Tensor cores help accelerate AI-driven features like Generative Fill or Neural Filters, removing the friction from repetitive editing workflows in professional imaging software.

This silicon serves as a specialized tool for the person who needs a massive workspace but cannot afford the price tag of a top-tier professional card. It is not about raw horsepower or breaking benchmark records so much as the utility of a 16GB frame buffer in a market that usually limits mid-range buyers to half that amount. If your work involves heavy multitasking or memory-hungry AI tools, the narrow memory bandwidth is a small price to pay for the sheer stability of the extra VRAM. It is a blue-collar workstation card disguised as a gaming product, and for the right user, that extra memory is worth the launch MSRP of $499. For a build using this GPU, a 550W power supply is recommended to provide sufficient overhead.

Radeon RX 7900 GRE
Feature Analysis:

A 260W typical power draw places this hardware in a practical sweet spot for builders who want high-tier performance without the excessive thermal output of flagship silicon. Since it uses two standard 8-pin power connectors, you can avoid the stiffness and clearance issues associated with newer high-density cables. This choice makes the installation process far more straightforward for those reusing an existing power supply or building in a compact chassis where cable management is often a struggle. While the base specification suggests a lower minimum, a 750W power supply is the target for a stable build to ensure the system handles power behavior during sudden visual transitions without hesitation.

The physical footprint and power requirements reflect a design that prioritizes compatibility across a wide range of mid-tower cases and motherboard generations. By utilizing a full PCIe 4.0 x16 interface, the card maintains its data throughput efficiency even if installed in an older PCIe 3.0 slot, preventing the bandwidth limitations found on cards with fewer lanes. This architectural stability ensures the hardware remains predictable and reliable over years of heavy use, rather than requiring a total system overhaul just to accommodate its presence. It is a dense, efficient package that focuses on the core requirements of high-resolution textures and thermal longevity.

  • Thermal Efficiency: The 260W TDP allows for manageable heat levels, ensuring your case fans do not have to run at maximum speeds to keep the internal environment stable.
  • Cable Compatibility: Using two 8-pin connectors means the card works with almost any standard power supply, eliminating the need for specialized adapters or specific ATX 3.0 hardware.
  • VRAM Insurance: A 16GB memory ceiling offers a significant buffer for heavy texture packs in modern titles, reducing the likelihood of stuttering as games become more asset-heavy.
  • Platform Longevity: The combination of RDNA 3.0 architecture and a full x16 interface provides a sturdy foundation that stays relevant as software requirements continue to evolve.
  • Installation Simplicity: The absence of experimental power standards and the manageable power draw make this a low-friction choice for both new builders and those looking for a plug-and-play upgrade.

Choosing this hardware means opting for a balance between raw capability and build-side convenience. You are getting a card that fills the gap for the builder who wants flagship-level visual assets and 1440p stability without the diminishing returns of higher wattage tiers. It avoids the complexities of specialized power management, resulting in a system that stays quiet and operates within safe thermal limits. The focus here is on a reliable experience that values long-term stability and physical compatibility above all else. It is a technical choice for someone who prefers a clean, predictable build over dealing with the heat and power requirements of the absolute top-tier silicon.

GeForce RTX 4060 Ti 16GB
Feature Analysis:

A modest 165W thermal design power means this hardware fits into builds where space and airflow might be limited, as it produces far less heat than the high-end cards in the same generation. Because the power draw is so controlled, even models with two fans can maintain steady operation without the fans needing to spin at distracting speeds. This efficiency makes it a top-tier choice for compact or quiet builds that cannot accommodate massive triple-fan heatsinks or complex cooling setups. You are essentially getting a card that provides a massive memory pool without the aggressive thermal requirements usually associated with professional-grade hardware.

The 128-bit memory bus serves as a narrow bridge that connects the silicon to those 16GB of video memory, acting as a permanent physical constraint on how quickly data can move. While the capacity is large enough to handle exceptionally detailed textures, the restricted bandwidth means the card is at its best when those assets can stay within the on-chip cache. If you attempt to push the hardware into scenarios that go beyond its architectural intent, you may find the memory interface becoming the primary limiting factor regardless of how much VRAM remains unused. It is a specialized configuration that prioritizes total storage room over raw speed, a trade-off that defines the daily experience of using this specific model.

  • Power Supply Requirements: You should pair this card with a 550W power supply to ensure there is enough room for transient spikes and to keep the unit operating within its most efficient curve.
  • Physical Connectivity: The inclusion of a 16-pin power connector requires a modern power supply or a tidy cable management strategy to handle the necessitated adapter comfortably.
  • Motherboard Interface: The PCIe 4.0 x8 connection means that using this card on an older PCIe 3.0 platform can lead to a measurable loss in bandwidth that might impact smoothness.
  • Architecture Advantages: The Ada Lovelace architecture provides a significant jump in efficiency over previous generations, allowing for high-tier feature support while keeping your total system power consumption low.

Building around this card is a straightforward process because its low thermal output and predictable power needs remove much of the friction found in modern PC assembly. You do not have to worry about whether your case has enough depth to clear a massive shroud or if your existing intake fans can provide enough cool air to prevent thermal throttling. It acts as a reliable anchor for a mid-range system, offering a huge buffer for future software that might demand more memory without forcing you to upgrade your entire power infrastructure. While the narrow bus remains a ceiling, the sheer amount of room provided by the 16GB of VRAM offers a level of stability that is rare at the $499 launch MSRP price point.

Radeon RX 7900 GRE
Full Tech Specs:
Feature Specification
Product Name Radeon RX 7900 GRE
MSRP $549
Release Date 2023-07-27
Chipset Manufacturer AMD
Memory Size 16 GB
Memory Type GDDR6
Memory Bus 256 bit
Memory Clock 2250 MHz
Memory Bandwidth 576.0 GB/s
Base Clock 1287 MHz
Boost Clock 2245 MHz
Shading Units 5120
Ray Tracing Cores 80
TMUs 320
ROPs 160
Pixel Rate 359.2 GPixel/s
Texture Rate 718.4 GTexel/s
Compute Power (FP16) 92.0 TFLOPS
Compute Power (FP32) 46.0 TFLOPS
Compute Power (FP64) 1.4 TFLOPS
Architecture RDNA 3.0
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 2x 8-pin
TDP 260 W
Suggested PSU 700 W
GeForce RTX 4060 Ti 16GB
Full Tech Specs:
Feature Specification
Name GeForce RTX 4060 Ti 16GB
MSRP $499
Release Date 2023-05-18
Chipset Manufacturer NVIDIA
Memory Size 16 GB
Memory Type GDDR6
Memory Bus 128 bit
Memory Clock 2250 MHz
Memory Bandwidth 288.0 GB/s
Base Clock 2310 MHz
Boost Clock 2535 MHz
Shading Units 4352
Ray Tracing Cores 34
TMUs 136
ROPs 48
Pixel Rate 121.7 GPixel/s
Texture Rate 344.8 GTexel/s
Compute Power (FP16) 22.1 TFLOPS
Compute Power (FP32) 22.1 TFLOPS
Compute Power (FP64) 344.8 GFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x8
Power Connectors 1x 16-pin
TDP 165 W
Suggested PSU (Minimum) 550 W

Final Verdict

The Radeon RX 7900 GRE stands as the significantly more powerful option for enthusiasts looking to push higher resolutions. While both cards share 16GB of VRAM, the actual performance gap is massive due to differences in memory architecture and raw compute power. The GeForce RTX 4060 Ti 16GB uses a narrow 128-bit bus which often chokes at higher detail levels because the data cannot move fast enough to the processor. In contrast, the Radeon RX 7900 GRE features a 256-bit bus that provides 576 GB/s of bandwidth. This ensures that complex textures and large assets load without the stuttering common on hardware with restricted data paths. The RDNA 3 architecture here is fundamentally more robust for pure rasterization, offering nearly 50% more speed in most heavy gaming scenarios. The physical hardware reflects this power increase, requiring a larger power supply and two 8-pin connectors compared to the single connector on the Ada Lovelace unit. While the GeForce card is impressively efficient and helps if you are building in a tiny case with a small power supply, it simply cannot keep up when the workload gets heavy. Choosing the Radeon means getting much higher raw throughput that makes the gaming experience feel fluid across a wider range of modern titles. The $549 MSRP of the Radeon represents a much better performance value than the $499 MSRP of the GeForce alternative when you look at the frame output per dollar spent.

  • Buy Radeon RX 7900 GRE if you want nearly double the memory bandwidth for high-fidelity gaming and need the approximately 48% speed advantage offered by the RDNA 3 architecture.
  • Buy GeForce RTX 4060 Ti 16GB if you are limited by a small power supply, require the $499 MSRP to stay within a strict budget, or specifically need the lower 165W power draw for a compact build.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.