Radeon RX 7900 GRE vs Intel Arc B570

Winner:
Radeon RX 7900 GRE
Main Difference:
Superior memory bandwidth and double the shading units for high-end performance.
Page Summary:
Radeon RX 7900 GRE provides a massive performance advantage over the Intel Arc B570, leveraging 16GB VRAM and a wider 256-bit memory bus to handle demanding textures and complex geometry that the more modest Intel card struggles to process efficiently.
Last updated:
January 31, 2026

The Essentials

Radeon RX 7900 GRE

MSRP:
$549
See Current Price
Spec Sheet:
Core Count:
5120
Thread Count:
Base Clock:
1287 MHz
Boost Clock:
2245 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
260 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2023-07-27
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
62.5
51.5
1440p
54.2
40.4
4K
32.5
32.5
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Intel Arc B570

MSRP:
$219
See Current Price
Spec Sheet:
Core Count:
2304
Thread Count:
Base Clock:
2500 MHz
Boost Clock:
2500 MHz
Integrated Graphics:
VRAM:
10.0 GB
L3 Cache:
10.0 GB
TDP:
150 W
Socket:
160 bit
Bus Width:
160 bit
Release Date:
2025-01-16
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
30.3
30.3
1440p
24.7
23.9
4K
15.3
9.6
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

Radeon RX 7900 GRE
Gaming Analysis:

The Radeon RX 7900 GRE is a high-performance contender that fits into the upper-tier of gaming hardware, offering a massive leap over entry-level parts. Built on the RDNA 3.0 architecture, it provides enough raw power to handle extremely high visual settings at 1440p and can stretch into higher resolutions if you manage your expectations regarding total frame output. It behaves as a balanced middle ground in the lineup, delivering smooth motion in standard gaming without the heat or power demands found in the heaviest flagship silicon.

The 16GB GDDR6 memory buffer is a practical advantage for modern gaming. Many modern titles are increasingly hungry for video memory, and this 16GB ceiling allows you to keep texture quality at maximum without the stuttering or blurry asset loading that can happen on cards with less capacity. This buffer provides significant longevity against the demanding requirements of visual-heavy console ports and complex open-world environments.

  • Standard Gaming (Rasterization): This is where the card is most comfortable. It produces fluid movement across almost any modern title at 1440p. While it can handle 4K, the 256-bit memory bus means performance might tighten in extremely dense scenes compared to larger enthusiast cards.
  • Ray Tracing Performance: With 80 Ray Accelerators, the hardware can handle ray-traced lighting effects, though it remains more demanding than standard rendering. In titles with lighter ray tracing implementations, the visuals remain sharp and playable, but for heavy lighting loads, you will likely need to engage upscaling tools to maintain a steady feel.
  • Upscaling and Frame Generation: You have access to FSR 3 and driver-level Fluid Motion Frames. These features are great for bridging the gap during heavy 4K workloads or when you want the highest possible visual fluidity in fast-paced titles.
  • Memory Tuning: One interesting trait of this card is the ability to adjust memory timings through software. For those comfortable with basic tuning, there is room to tighten up performance and gain a small edge in responsiveness.

The 750W power supply recommendation ensures the card has plenty of headroom for its 2245 MHz boost clock during intense gaming sessions. It is a sensible choice for a build centered on high fidelity and a generous memory overhead, offering a path to enthusiast-level gaming without demanding a specialized high-wattage power environment or a massive chassis. At a launch MSRP of $549, it represents a sturdy investment for high-refresh 1440p setups.

Intel Arc B570
Gaming Analysis:

The Intel Arc B570 delivers strong results as a high-value choice for standard resolutions, though it can manage higher pixel counts if you are willing to adjust expectations. It is not meant for heavy workloads at 4K where performance drops off significantly. At 1080p, the experience is fluid and consistent across modern releases, representing a serious step up in performance for its class. While the Xe2-HPG architecture is more refined than previous efforts, you still need to be aware that Intel hardware relies heavily on steady driver updates to stay competitive.

The 10GB VRAM configuration serves as a capable middle ground between cramped budget options and high-end enthusiast cards. This extra memory headroom helps prevent the stuttering and hitching that often occur when 8GB cards run out of space for textures. With a 160-bit memory bus, the card maintains enough bandwidth to handle fast motion without the underlying data pipeline becoming a bottleneck. You likely will not have to drop down to lower texture settings just to keep the image stable during intense scenes.

Ray tracing performance is a standout trait for any card at this MSRP, though you should keep your settings realistic. The dedicated ray tracing cores within the Battlemage architecture handle lighting calculations with more efficiency than typical entry-level hardware, often competing comfortably with standard industry alternatives in heavy lighting scenarios. Reflections and shadows appear more natural without making the game feel sluggish. At 1440p, the demand of these effects grows, making XeSS upscaling a helpful tool for keeping the visuals smooth and responsive.

  • Standard resolution gaming is excellent, frequently rivaling more expensive hardware.
  • Higher resolutions are reachable but usually require upscaling or lower presets to maintain a steady feel.
  • The Xe2-HPG architecture shows strong compatibility with modern DirectX 12 and Vulkan APIs.
  • Legacy DirectX 11 software may occasionally experience uneven frame delivery as drivers manage the CPU overhead.
  • The 10GB of GDDR6 memory avoids the texture popping or visual glitches common on 8GB cards.
  • Intel XeSS 2 provides significant fluidity improvements through frame generation technology.
  • A power supply of at least 550W is recommended to ensure the system remains stable under heavy gaming loads.
Radeon RX 7900 GRE
Productivity Analysis:

While the hardware is designed to excel in high resolution gaming, its utility for professional tasks is defined by the heavy compute resources packed into its 80 processing units. Moving from gaming to creative work reveals a card that handles dense 3D viewports and complex timelines with steady composure. The RDNA 3.0 architecture provides a massive amount of raw mathematical power that helps maintain responsiveness in specialized software when you are manipulating heavy assets or managing a multi-monitor productivity setup.

The 16GB memory buffer serves as a critical safety net for anyone working with high-resolution textures or multi-layered video projects. Cards with smaller capacities might struggle the moment you load a secondary application or a large data set, but this overhead ensures the system does not immediately stall during an export or a heavy render. Having this much video memory creates a stable foundation for professional workflows that will remain relevant as software requirements continue to climb in the coming years.

  • Rendering and Simulation Performance: The 80 Ray Accelerators assist in hardware-accelerated rendering tasks within applications like Blender, though the specific software translation layer involves different optimization paths than competitors. While it provides excellent speed for traditional rendering, it relies on raw compute strength to power through complicated lighting calculations.
  • Memory Throughput and Bandwidth: With a 256-bit memory bus providing 576 GB/s of bandwidth, the card handles large data transfers with considerable speed. This allows for smooth scrubbing in video editing software where the GPU must quickly fetch and process frames from the buffer to keep up with your editing pace.
  • Precision Compute Tasks: The hardware offers 92 TFLOPS of FP16 performance, which is a major benefit for AI-assisted tools and image processing filters. This raw arithmetic capability allows the card to accelerate modern neural filters and generative tools even without specialized proprietary cores.
  • Modern Video Encoding: Inclusion of hardware AV1 encoding is a significant perk for video professionals and streamers alike. This allows you to produce high-quality exports with efficient file sizes, reducing the strain on your processor and speeding up the final delivery phase of a project.
  • Technical Software Compatibility: In certain engineering and CAD applications like SolidWorks, the architecture often demonstrates a surprising lead in visualization fluidity. It handles the specific viewport instructions of these tools more effectively than many consumer-grade alternatives, making it a viable choice for a dual-purpose workstation and gaming machine.

A 750W power supply is the recommended choice to provide enough energy for the card during heavy sustained workloads. Despite the massive compute potential, it operates efficiently without creating an overwhelming heat signature or excessive noise levels. At its launch MSRP of $549, it stands as a practical option for builders who need a high-end memory buffer and significant processing power for creative tasks without venturing into the extreme price tiers of flagship workstations.

Intel Arc B570
Productivity Analysis:

While the hardware handles gaming with ease, the Intel Arc B570 offers a different experience when you move into professional software where stability and driver maturity take center stage. This card provides the hardware muscle for creative tasks, but the software side remains in a state of ongoing development. You can ignore occasional friction in a match, but a crash during a long render is much harder to overlook. The Xe2-HPG architecture is built for modern standards, yet anyone using this for work must accept that Intel is still refining the software support required for a perfectly fluid professional workflow.

The 10GB VRAM buffer offers a helpful middle ground compared to the more common 8GB found on many entry-level cards. This extra space prevents the immediate slowdowns that happen when a video timeline or a 3D scene exceeds the memory of the card. With a 160-bit memory bus and 380 GB/s of bandwidth, scrubbing through high-resolution footage feels responsive rather than sticky or sluggish. If you push into massive 3D environments with heavy textures, you will eventually reach a limit where the system begins to struggle, but for standard 1440p projects, the ceiling is comfortable. It provides just enough breathing room to keep your focus on the work instead of managing hardware limits.

Intel includes a capable media engine featuring hardware support for modern standards like AV1 and VVC. This allows the GPU to process heavy exports and high-bitrate broadcasts without placing the entire load on your CPU. It handles complex chroma subsampling that often causes issues for older hardware, making it a strong choice for video editors working with modern camera files. You lose the specific software optimizations found in the CUDA ecosystem, which can be a hurdle if your specific tools are built around that industry standard. However, the raw compute performance and XMX engines make it a credible contender for AI-assisted tools like noise reduction and automated masking in common editing suites.

  • The 10GB of VRAM provides a small but helpful safety margin for complex timelines and higher-resolution texture work.
  • Hardware support for VVC and AV1 makes the card a strong choice for modern video encoding and archival tasks.
  • High memory bandwidth ensures that navigating through uncompressed media files remains smooth and predictable.
  • The 550W power supply requirement ensures the system has enough headroom for stability during the long hours of a heavy render.
  • Dedicated XMX engines provide a significant boost for localized AI tasks like upscaling and smart masking in creative applications.
Radeon RX 7900 GRE
Feature Analysis:

A 260W typical power draw places this hardware in a practical sweet spot for builders who want high-tier performance without the excessive thermal output of flagship silicon. Since it uses two standard 8-pin power connectors, you can avoid the stiffness and clearance issues associated with newer high-density cables. This choice makes the installation process far more straightforward for those reusing an existing power supply or building in a compact chassis where cable management is often a struggle. While the base specification suggests a lower minimum, a 750W power supply is the target for a stable build to ensure the system handles power behavior during sudden visual transitions without hesitation.

The physical footprint and power requirements reflect a design that prioritizes compatibility across a wide range of mid-tower cases and motherboard generations. By utilizing a full PCIe 4.0 x16 interface, the card maintains its data throughput efficiency even if installed in an older PCIe 3.0 slot, preventing the bandwidth limitations found on cards with fewer lanes. This architectural stability ensures the hardware remains predictable and reliable over years of heavy use, rather than requiring a total system overhaul just to accommodate its presence. It is a dense, efficient package that focuses on the core requirements of high-resolution textures and thermal longevity.

  • Thermal Efficiency: The 260W TDP allows for manageable heat levels, ensuring your case fans do not have to run at maximum speeds to keep the internal environment stable.
  • Cable Compatibility: Using two 8-pin connectors means the card works with almost any standard power supply, eliminating the need for specialized adapters or specific ATX 3.0 hardware.
  • VRAM Insurance: A 16GB memory ceiling offers a significant buffer for heavy texture packs in modern titles, reducing the likelihood of stuttering as games become more asset-heavy.
  • Platform Longevity: The combination of RDNA 3.0 architecture and a full x16 interface provides a sturdy foundation that stays relevant as software requirements continue to evolve.
  • Installation Simplicity: The absence of experimental power standards and the manageable power draw make this a low-friction choice for both new builders and those looking for a plug-and-play upgrade.

Choosing this hardware means opting for a balance between raw capability and build-side convenience. You are getting a card that fills the gap for the builder who wants flagship-level visual assets and 1440p stability without the diminishing returns of higher wattage tiers. It avoids the complexities of specialized power management, resulting in a system that stays quiet and operates within safe thermal limits. The focus here is on a reliable experience that values long-term stability and physical compatibility above all else. It is a technical choice for someone who prefers a clean, predictable build over dealing with the heat and power requirements of the absolute top-tier silicon.

Intel Arc B570
Feature Analysis:

A typical thermal design power of 150W makes the Intel Arc B570 relatively simple to cool, though build stability depends on more than just the temperature of the chip. While the base specification suggests a 450W power supply, aiming for a 550W unit provides a necessary buffer for transient power spikes and system wide efficiency. Running a power supply too close to its maximum capacity often leads to increased fan noise and unnecessary heat buildup within the case. Maintaining this overhead ensures your internal components receive clean power during the rapid fluctuations of modern gaming and creative software.

The PCIe 4.0 x8 interface presents a specific consideration for anyone installing this card into an older motherboard. Because it utilizes half the physical lanes of a full x16 slot, users on PCIe 3.0 platforms will effectively operate with reduced bandwidth. This limitation rarely causes issues in every title, but it can lead to inconsistent frame delivery or stuttering in games that aggressively move data between the system memory and the 10GB of VRAM. You should also verify that your system supports Resizable BAR, as this specific Intel architecture relies on that feature to function at its intended performance level.

You can avoid the complexities of modern high end power standards because this card relies on a single 8-pin connector. There is no requirement for specialized adapters or the stiffer cables associated with newer power specifications, which helps keeps cable management straightforward and reliable. The 10GB of GDDR6 memory sits on a 160-bit bus, providing a total of 380 GB/s bandwidth to keep textures loading smoothly at 1080p and 1440p. While you are adopting a newer software ecosystem that is still maturing, the hardware itself follows a traditional and user friendly installation path that fits easily into most standard mid sized cases.

  • The 150W power draw helps maintain a quiet system environment by putting less cooling pressure on your case fans.
  • A standard 8-pin power connector ensures compatibility with most existing power supplies without needing extra adapters.
  • Using a 550W power supply provides the stability needed to handle the momentary power fluctuations common in the Xe2-HPG architecture.
  • The 10GB VRAM configuration offers a meaningful safety margin over older 8GB cards when playing open world games with high resolution textures.
  • Support for the VVC codec and AV1 encoding provides a future proof pathway for high quality video playback and streaming tasks.
Radeon RX 7900 GRE
Full Tech Specs:
Feature Specification
Product Name Radeon RX 7900 GRE
MSRP $549
Release Date 2023-07-27
Chipset Manufacturer AMD
Memory Size 16 GB
Memory Type GDDR6
Memory Bus 256 bit
Memory Clock 2250 MHz
Memory Bandwidth 576.0 GB/s
Base Clock 1287 MHz
Boost Clock 2245 MHz
Shading Units 5120
Ray Tracing Cores 80
TMUs 320
ROPs 160
Pixel Rate 359.2 GPixel/s
Texture Rate 718.4 GTexel/s
Compute Power (FP16) 92.0 TFLOPS
Compute Power (FP32) 46.0 TFLOPS
Compute Power (FP64) 1.4 TFLOPS
Architecture RDNA 3.0
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 2x 8-pin
TDP 260 W
Suggested PSU 700 W
Intel Arc B570
Full Tech Specs:
Feature Specification
Product Name Intel Arc B570
MSRP $219
Release Date 2025-01-16
Manufacturer Intel
Memory Size 10 GB
Memory Type GDDR6
Memory Bus 160 bit
Memory Clock 2375 MHz
Memory Bandwidth 380.0 GB/s
Base Clock 2500 MHz
Boost Clock 2500 MHz
Shading Units 2304
Ray Tracing Cores 18
TMUs 144
ROPs 80
Pixel Rate 200 GPixel/s
Texture Rate 360 GTexel/s
Compute Power (FP16) 23.0 TFLOPS
Compute Power (FP32) 11.5 TFLOPS
Compute Power (FP64) 1.4 TFLOPS
Architecture Xe2-HPG
Process Size 5 nm
Interface PCIe 4.0 x8
Power Connectors 1x 8-pin
TDP 150 W
Recommended PSU 550 W

Final Verdict

The Radeon RX 7900 GRE stands as the clear winner here by offering a significantly higher tier of power and long-term viability compared to the entry-level design of the Intel Arc B570. While the Intel card targets users matching a $219 MSRP, the Radeon RX 7900 GRE justifies its $549 MSRP by delivering roughly double the raw compute throughput and a much larger memory buffer. The GRE features 16GB of GDDR6 memory on a wide 256-bit bus, which provides 576 GB/s of bandwidth. This allows the GPU to feed its 5120 shading units without the bottlenecks typically seen on cards with narrower memory interfaces. The Intel Arc B570 utilizes a 160-bit bus and 10GB of VRAM, which limits its ability to sustain high-fidelity assets in modern titles without introducing stutter or visual artifacts.

Technical depth matters when looking at the RDNA 3 architecture of the GRE versus the Xe2-HPG design of the B570. The GRE includes 80 dedicated ray tracing cores and a massive advantage in floating-point performance, making it a much faster option for both gaming and professional rendering tasks. The Intel card remains a niche choice for users who prioritize AV1 encoding or specific media workflows but it lacks the sheer muscle needed to compete in high-resolution environments. Drivers also play a role; AMD has had much more time to refine the RDNA 3 stack, ensuring greater stability across a wider variety of game engines. The GRE simply offers more overhead for future software updates and more complex game worlds.

  • Buy Radeon RX 7900 GRE if you need top-tier performance for high-resolution gaming, require 16GB of VRAM for creative work, or want a card with enough bandwidth to last several years.
  • Buy Intel Arc B570 if your budget is strictly tied to its $219 MSRP and you primarily focus on standard gaming or media encoding while accepting lower memory capacity.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.