Radeon RX 7900 GRE vs Radeon RX 7600 XT

Winner:
Radeon RX 7900 GRE
Main Difference:
Higher memory bandwidth and significantly more compute cores for high-resolution gaming.
Page Summary:
Radeon RX 7900 GRE wins because its massive 256-bit memory bus and deep core count provide a major performance lead over the Radeon RX 7600 XT, making it more capable for demanding graphical loads beyond standard resolutions.
Last updated:
January 31, 2026

The Essentials

Radeon RX 7900 GRE

MSRP:
$549
See Current Price
Spec Sheet:
Core Count:
5120
Thread Count:
Base Clock:
1287 MHz
Boost Clock:
2245 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
260 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2023-07-27
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
62.5
51.5
1440p
54.2
40.4
4K
32.5
32.5
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Radeon RX 7600 XT

MSRP:
$329
See Current Price
Spec Sheet:
Core Count:
2048
Thread Count:
Base Clock:
1980 MHz
Boost Clock:
2755 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
190 W
Socket:
128 bit
Bus Width:
128 bit
Release Date:
2024-01-08
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
36.2
26.2
1440p
29.2
19.6
4K
21.4
14.8
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

Radeon RX 7900 GRE
Gaming Analysis:

The Radeon RX 7900 GRE is a high-performance contender that fits into the upper-tier of gaming hardware, offering a massive leap over entry-level parts. Built on the RDNA 3.0 architecture, it provides enough raw power to handle extremely high visual settings at 1440p and can stretch into higher resolutions if you manage your expectations regarding total frame output. It behaves as a balanced middle ground in the lineup, delivering smooth motion in standard gaming without the heat or power demands found in the heaviest flagship silicon.

The 16GB GDDR6 memory buffer is a practical advantage for modern gaming. Many modern titles are increasingly hungry for video memory, and this 16GB ceiling allows you to keep texture quality at maximum without the stuttering or blurry asset loading that can happen on cards with less capacity. This buffer provides significant longevity against the demanding requirements of visual-heavy console ports and complex open-world environments.

  • Standard Gaming (Rasterization): This is where the card is most comfortable. It produces fluid movement across almost any modern title at 1440p. While it can handle 4K, the 256-bit memory bus means performance might tighten in extremely dense scenes compared to larger enthusiast cards.
  • Ray Tracing Performance: With 80 Ray Accelerators, the hardware can handle ray-traced lighting effects, though it remains more demanding than standard rendering. In titles with lighter ray tracing implementations, the visuals remain sharp and playable, but for heavy lighting loads, you will likely need to engage upscaling tools to maintain a steady feel.
  • Upscaling and Frame Generation: You have access to FSR 3 and driver-level Fluid Motion Frames. These features are great for bridging the gap during heavy 4K workloads or when you want the highest possible visual fluidity in fast-paced titles.
  • Memory Tuning: One interesting trait of this card is the ability to adjust memory timings through software. For those comfortable with basic tuning, there is room to tighten up performance and gain a small edge in responsiveness.

The 750W power supply recommendation ensures the card has plenty of headroom for its 2245 MHz boost clock during intense gaming sessions. It is a sensible choice for a build centered on high fidelity and a generous memory overhead, offering a path to enthusiast-level gaming without demanding a specialized high-wattage power environment or a massive chassis. At a launch MSRP of $549, it represents a sturdy investment for high-refresh 1440p setups.

Radeon RX 7600 XT
Gaming Analysis:

The Radeon RX 7600 XT is a specialized mid-range card that sacrifices raw speed to solve a very specific problem involving video memory. It serves the user who wants to max out texture sliders without the system hitching. While it functions for entry-level tasks at higher resolutions, the 128-bit memory bus acts like a limiter once the action gets heavy. You can push the card into demanding territory, but the hardware feels strained and the experience loses fluidity quickly. It is primarily a tool for high-fidelity 1080p gaming.

The standout feature is the 16GB GDDR6 VRAM buffer, which is remarkably large for a card at its launch MSRP of $329. Many cards in this bracket are limited to 8GB, which often leads to blurry textures or stuttering in modern ports. With the 7600 XT, you can crank texture settings to the highest levels. This extra breathing room ensures the game stays fluid and sharp, preventing the jerky feeling that happens when a GPU runs out of memory and forced data swapping occurs. It provides a level of peace of mind against upcoming titles that demand high video memory overhead.

Ray tracing represents a significant hurdle for this architecture. While the RDNA 3 hardware supports lighting and reflections, the 32 Ray Accelerators lack the raw muscle for heavy real-time calculations. Turning on complex Ray Tracing effects in demanding titles will likely turn a fluid game into a sluggish experience. You will have to rely on FSR upscaling to maintain a playable state with these effects active. For most users, it is more effective to leave Ray Tracing off and enjoy the native rasterization speed instead.

  • 1080p Performance: Excellent. This is the sweet spot where the card stays fluid and responsive even with high settings.
  • 1440p Performance: Acceptable. You will likely need to lower some settings or use upscaling to maintain a steady feel.
  • 4K Performance: Poor. The internal architecture cannot keep up with the high pixel count for modern gaming.
  • Texture Quality: Elite. The 16GB of VRAM is more than enough for any current game at its target resolution.
  • Ray Tracing: Poor. Expect a heavy performance penalty that makes most lighting-heavy games feel sluggish.
Radeon RX 7900 GRE
Productivity Analysis:

While the hardware is designed to excel in high resolution gaming, its utility for professional tasks is defined by the heavy compute resources packed into its 80 processing units. Moving from gaming to creative work reveals a card that handles dense 3D viewports and complex timelines with steady composure. The RDNA 3.0 architecture provides a massive amount of raw mathematical power that helps maintain responsiveness in specialized software when you are manipulating heavy assets or managing a multi-monitor productivity setup.

The 16GB memory buffer serves as a critical safety net for anyone working with high-resolution textures or multi-layered video projects. Cards with smaller capacities might struggle the moment you load a secondary application or a large data set, but this overhead ensures the system does not immediately stall during an export or a heavy render. Having this much video memory creates a stable foundation for professional workflows that will remain relevant as software requirements continue to climb in the coming years.

  • Rendering and Simulation Performance: The 80 Ray Accelerators assist in hardware-accelerated rendering tasks within applications like Blender, though the specific software translation layer involves different optimization paths than competitors. While it provides excellent speed for traditional rendering, it relies on raw compute strength to power through complicated lighting calculations.
  • Memory Throughput and Bandwidth: With a 256-bit memory bus providing 576 GB/s of bandwidth, the card handles large data transfers with considerable speed. This allows for smooth scrubbing in video editing software where the GPU must quickly fetch and process frames from the buffer to keep up with your editing pace.
  • Precision Compute Tasks: The hardware offers 92 TFLOPS of FP16 performance, which is a major benefit for AI-assisted tools and image processing filters. This raw arithmetic capability allows the card to accelerate modern neural filters and generative tools even without specialized proprietary cores.
  • Modern Video Encoding: Inclusion of hardware AV1 encoding is a significant perk for video professionals and streamers alike. This allows you to produce high-quality exports with efficient file sizes, reducing the strain on your processor and speeding up the final delivery phase of a project.
  • Technical Software Compatibility: In certain engineering and CAD applications like SolidWorks, the architecture often demonstrates a surprising lead in visualization fluidity. It handles the specific viewport instructions of these tools more effectively than many consumer-grade alternatives, making it a viable choice for a dual-purpose workstation and gaming machine.

A 750W power supply is the recommended choice to provide enough energy for the card during heavy sustained workloads. Despite the massive compute potential, it operates efficiently without creating an overwhelming heat signature or excessive noise levels. At its launch MSRP of $549, it stands as a practical option for builders who need a high-end memory buffer and significant processing power for creative tasks without venturing into the extreme price tiers of flagship workstations.

Radeon RX 7600 XT
Productivity Analysis:

While the Radeon RX 7600 XT targets high fidelity 1080p gaming, its usefulness for creative work depends entirely on whether your specific software requires massive data capacity or high speed throughput. This card occupies a unique position in the hardware landscape because of its 16GB VRAM buffer. Most hardware in this performance tier is limited to half that amount, which creates a hard ceiling for complexity in 3D modeling or video work. If you are building a dense scene in Blender with high resolution textures, having 16GB of room prevents the sudden slowdowns or software failures that occur when your project exceeds the physical memory on the card. You are essentially paying for stability and headroom that typically costs much more to acquire.

The trade off for such a large capacity is the narrow 128 bit memory bus. Even though the bucket is large, the path to fill it is relatively slim, which impacts tasks that require massive amounts of data to move instantly. In video editing suites like DaVinci Resolve, you will find that 4K timelines and high quality AV1 encoding stay stable, though scrubbing through layers of effects might not feel as snappy as it does on wider bus architectures. The card is less about raw processing speed and more about ensuring that a project actually finishes without a memory error. For hobbyists working on local AI and large language models, the 16GB capacity is a significant advantage as it allows for larger context windows and more complex image generation without relying on slower system memory.

Support for professional workflows can vary because some creative tools are still heavily optimized for different hardware standards. The 32 Ray Accelerators provide hardware support for ray traced rendering, but the relative youth of the ecosystem means you might encounter less polished drivers or slower update cycles for specific plugins. It is a calculated choice where you favor vertical headroom over the industry standard ecosystem. This card effectively bridges the gap between consumer hardware and the memory requirements of entry level professional suites, providing an affordable path for creators who prioritize project scale over raw export speed.

  • 3D Modeling Performance: The 16GB capacity allows for massive scenes and high resolution textures that would be impossible on 8GB hardware, even if the final render speed is slower than higher tier cards.
  • Video Production: Integrated AV1 support and a large memory buffer make for a stable 4K editing experience, though the 128 bit bus limits the card during heavy multi layer scrubbing.
  • AI and Machine Learning: This is a standout option for hobbyist AI workloads because the memory overhead supports larger datasets and more complex local models.
  • Platform Stability: While the hardware is capable, users should expect a slightly different software experience compared to the industry standard focus of competing platforms.
  • Power Requirements: To ensure consistent performance and system stability across heavy workloads, a 550W power supply is recommended.
Radeon RX 7900 GRE
Feature Analysis:

A 260W typical power draw places this hardware in a practical sweet spot for builders who want high-tier performance without the excessive thermal output of flagship silicon. Since it uses two standard 8-pin power connectors, you can avoid the stiffness and clearance issues associated with newer high-density cables. This choice makes the installation process far more straightforward for those reusing an existing power supply or building in a compact chassis where cable management is often a struggle. While the base specification suggests a lower minimum, a 750W power supply is the target for a stable build to ensure the system handles power behavior during sudden visual transitions without hesitation.

The physical footprint and power requirements reflect a design that prioritizes compatibility across a wide range of mid-tower cases and motherboard generations. By utilizing a full PCIe 4.0 x16 interface, the card maintains its data throughput efficiency even if installed in an older PCIe 3.0 slot, preventing the bandwidth limitations found on cards with fewer lanes. This architectural stability ensures the hardware remains predictable and reliable over years of heavy use, rather than requiring a total system overhaul just to accommodate its presence. It is a dense, efficient package that focuses on the core requirements of high-resolution textures and thermal longevity.

  • Thermal Efficiency: The 260W TDP allows for manageable heat levels, ensuring your case fans do not have to run at maximum speeds to keep the internal environment stable.
  • Cable Compatibility: Using two 8-pin connectors means the card works with almost any standard power supply, eliminating the need for specialized adapters or specific ATX 3.0 hardware.
  • VRAM Insurance: A 16GB memory ceiling offers a significant buffer for heavy texture packs in modern titles, reducing the likelihood of stuttering as games become more asset-heavy.
  • Platform Longevity: The combination of RDNA 3.0 architecture and a full x16 interface provides a sturdy foundation that stays relevant as software requirements continue to evolve.
  • Installation Simplicity: The absence of experimental power standards and the manageable power draw make this a low-friction choice for both new builders and those looking for a plug-and-play upgrade.

Choosing this hardware means opting for a balance between raw capability and build-side convenience. You are getting a card that fills the gap for the builder who wants flagship-level visual assets and 1440p stability without the diminishing returns of higher wattage tiers. It avoids the complexities of specialized power management, resulting in a system that stays quiet and operates within safe thermal limits. The focus here is on a reliable experience that values long-term stability and physical compatibility above all else. It is a technical choice for someone who prefers a clean, predictable build over dealing with the heat and power requirements of the absolute top-tier silicon.

Radeon RX 7600 XT
Feature Analysis:

A typical 190W power draw means this card pulls more energy and generates more heat than the standard model, requiring a case with decent airflow to prevent fans from spinning up to loud or distracting levels. Because it produces a noticeable thermal load for a mid-range part, you should avoid stuffing it into tiny enclosures that lack intake fans. The physical installation is straightforward because it uses a single standard 8-pin power connector instead of the newer, stiffer adapters that some modern cards require. This allows you to use the power cables already attached to your current power supply without dealing with brittle dongles or clearance issues against the side panel. For a stable build that handles sudden power spikes during heavy gaming sessions, you should pair this card with a 550W power supply.

The hardware utilizes a PCIe 4.0 x8 interface, which is a specific detail that matters if you are rebuilding an older computer. On a modern motherboard, this connection is fast and transparent, but on older systems that only support PCIe 3.0, the available bandwidth to the processor is reduced. This bottleneck can become noticeable in games that constantly swap data between the 16GB VRAM buffer and your system memory. While the large memory capacity is the primary reason to choose this card for long-term texture headroom, the narrow lane count means it performs most reliably in a modern PCIe 4.0 environment. It is a specialized trade where you get massive memory capacity for high-resolution textures at the cost of higher power consumption compared to the entry-level version.

  • Power Connection: The standard 8-pin connector ensures compatibility with existing power supplies without the need for specialized 12VHPWR adapters.
  • PSU Guidance: A 550W power supply provides the necessary stability to manage the 190W TDP and transient power demands.
  • System Compatibility: Users on PCIe 3.0 platforms should weigh the potential bandwidth limitations of the x8 interface before upgrading.
  • Thermal Management: The increased power draw over the base model necessitates at least two active case fans to maintain a quiet and stable environment.
  • Memory Strategy: The 16GB buffer is designed to prevent memory-related hitching and errors in titles with extremely high texture demands.
Radeon RX 7900 GRE
Full Tech Specs:
Feature Specification
Product Name Radeon RX 7900 GRE
MSRP $549
Release Date 2023-07-27
Chipset Manufacturer AMD
Memory Size 16 GB
Memory Type GDDR6
Memory Bus 256 bit
Memory Clock 2250 MHz
Memory Bandwidth 576.0 GB/s
Base Clock 1287 MHz
Boost Clock 2245 MHz
Shading Units 5120
Ray Tracing Cores 80
TMUs 320
ROPs 160
Pixel Rate 359.2 GPixel/s
Texture Rate 718.4 GTexel/s
Compute Power (FP16) 92.0 TFLOPS
Compute Power (FP32) 46.0 TFLOPS
Compute Power (FP64) 1.4 TFLOPS
Architecture RDNA 3.0
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 2x 8-pin
TDP 260 W
Suggested PSU 700 W
Radeon RX 7600 XT
Full Tech Specs:
Feature Specification
Name Radeon RX 7600 XT
MSRP $329
Release Date 2024-01-08
Chipset Manufacturer AMD
Memory Size 16 GB
Memory Type GDDR6
Memory Bus 128 bit
Memory Clock 2250 MHz
Memory Bandwidth 288.0 GB/s
Base Clock 1980 MHz
Boost Clock 2755 MHz
Shading Units 2048
Ray Tracing Cores 32
TMUs 128
ROPs 64
Pixel Rate 176.3 GPixel/s
Texture Rate 352.6 GTexel/s
Compute Power (FP16) 45.1 TFLOPS
Compute Power (FP32) 22.6 TFLOPS
Compute Power (FP64) 705.3 GFLOPS
Architecture RDNA 3.0
Process Size 6 nm
Interface PCIe 4.0 x8
Power Connectors 1x 8-pin
TDP 190 W
Suggested PSU 550 W

Final Verdict

The Radeon RX 7900 GRE stands as the superior choice for enthusiasts wanting more than just entry-level performance. While both cards share a 16GB VRAM capacity, the hardware backing that memory is vastly different between the two chips. The Radeon RX 7900 GRE utilizes a wide 256-bit memory bus that delivers roughly double the bandwidth of the 128-bit interface found on the Radeon RX 7600 XT. This bandwidth gap is the deciding factor when attempting to push higher image quality settings or complex textures in modern titles where data transfer speeds often matter as much as total capacity. The GRE architecture also features over double the shading units and significantly more compute power, allowing it to maintain much smoother motion in heavy scenes where the smaller card begins to struggle.

  • Memory bandwidth on the GRE reaches 576 GB/s, whereas the 7600 XT is limited to 288 GB/s at its launch MSRP.
  • The 7900 GRE features 5120 shading units compared to just 2048 units on the 7600 XT.
  • Ray tracing performance is notably better on the GRE due to the 80 dedicated ray accelerators versus the 32 accelerators on the budget-oriented card.
  • Power requirements reflect the performance gap, with the GRE needing a larger power supply to handle its higher throughput capacity.

Choosing between these two depends on your target performance level and your initial investment at launch. The $549 MSRP of the 7900 GRE places it in a different class entirely, offering a level of longevity that the 7600 XT cannot match. Buy Radeon RX 7900 GRE if you want a card capable of handling the most demanding games at high fidelity without hitting memory bottlenecks. Buy Radeon RX 7600 XT if you are sticking to a $329 MSRP budget and simply need a large VRAM buffer for specific applications or textured assets that fit within its narrower memory bus.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.