Radeon RX 9070 vs GeForce RTX 4060

Winner:
Radeon RX 9070
Main Difference:
Radeon RX 9070 offers doubled memory capacity and significantly higher raw throughput.
Page Summary:
Radeon RX 9070 provides a substantial leap in memory overhead and processing power, making it a more capable choice for high-fidelity workloads compared to the entry-level GeForce RTX 4060, which remains focused on efficient, standard-definition gaming.
Last updated:
January 31, 2026

The Essentials

Radeon RX 9070

MSRP:
$549
See Current Price
Spec Sheet:
Core Count:
3584
Thread Count:
Base Clock:
1330 MHz
Boost Clock:
2520 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
220 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2025-03-06
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
70
63.7
1440p
60.7
50.8
4K
42
42
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

GeForce RTX 4060

MSRP:
$299
See Current Price
Spec Sheet:
Core Count:
3072
Thread Count:
Base Clock:
1830 MHz
Boost Clock:
2460 MHz
Integrated Graphics:
VRAM:
8.0 GB
L3 Cache:
8.0 GB
TDP:
115 W
Socket:
128 bit
Bus Width:
128 bit
Release Date:
2023-05-18
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
36.6
30.1
1440p
27.2
21.3
4K
16
14.2
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

Radeon RX 9070
Gaming Analysis:

The Radeon RX 9070 handles high-resolution gaming with a focus on raw speed and texture overhead. While it finds its natural footing at 1440p, the architecture has enough headroom to make 4K gaming a viable reality for those willing to use upscaling in the most demanding environments. In standard rasterized titles, the experience is smooth and responsive, matching the fluid motion once reserved for previous flagship-tier hardware. Increasing the resolution to 4K pushes the silicon harder, but the card maintains stability without the abrupt performance drops that often affect mid-tier options.

A 16GB VRAM buffer serves as a high ceiling for modern texture demands, offering a layer of security that 12GB cards lack. This capacity allows you to push texture settings to their maximum without worrying about the stuttering or hitching that happens when video memory is exhausted. The 256-bit memory bus ensures that these large data sets move quickly, keeping the frame delivery consistent during fast camera pans in open-world games. It is a configuration designed to keep visuals sharp and movement steady across heavy assets and massive environments alike.

  • Ray tracing performance on this architecture is more capable than previous generations, though it still benefits from a balanced approach in the most intensive titles.
  • The hardware manages moderate lighting and reflection effects well, keeping the action fluid without requiring you to disable these features entirely.
  • Onboard AI accelerators support upscaling technology to clean up edges and stabilize the image when pushing for higher resolutions.
  • Lower resolutions are handled with such ease that the card becomes an excellent choice for high-refresh competitive displays where input lag must be minimized.

Choosing this card means prioritizing consistent frame delivery and high texture quality over the most advanced lighting techniques. The 16GB of memory ensures the GPU will not be throttled by growing asset sizes in the coming years, making it a reliable choice for gamers who want uncompressed visuals. It functions as a heavy-duty option that focuses on keeping gameplay fluid and textures crisp, even if the heaviest path-tracing workloads still require a compromise in settings.

GeForce RTX 4060
Gaming Analysis:

The GeForce RTX 4060 serves as a reliable entry point for high-fidelity gaming at 1080p, though it begins to struggle when pushed toward higher resolutions. While it handles standard rasterization well at its target resolution, its technical profile is defined by a narrow 128-bit memory bus that can create a data bottleneck in complex scenes. It is a highly efficient card that maintains smooth motion in competitive titles but lacks the raw hardware strength required for stable 4K output, where performance tends to drop off significantly.

The 8GB VRAM buffer acts as a fixed ceiling for visual settings in modern releases. In memory-intensive titles, this capacity creates a strict limit on texture quality. Attempting to use the highest available settings often exceeds this buffer, resulting in sudden stuttering and heavy frame drops as the system struggles to manage assets. To keep gameplay fluid, users generally need to be conservative with the texture slider and opt for modest settings to ensure the experience remains consistent.

Ray tracing on this card is more of a secondary option than a primary feature. While the Ada Lovelace architecture is efficient, the 24 RT cores are not sufficient for heavy path-traced lighting effects. Enabling full reflections or global illumination often transforms a smooth experience into one that feels heavy and unresponsive. Unless you use DLSS Frame Generation to help manage the workload, native ray tracing remains difficult to maintain for players who prioritize a responsive feel in their gameplay.

  • 1080p Performance: Reliable and punchy, maintaining steady frame rates across most libraries without creating much heat.
  • 1440p Viability: Functional primarily when using upscaling; attempting to run at native resolution leads to less stable movement and visual inconsistencies.
  • 4K Reality: Not a viable choice for gaming at this level because the hardware lacks the necessary memory bandwidth to move that many pixels quickly.
  • The DLSS Variable: Frame Generation provides a perceived lift in smoothness, though it does not bypass the physical 8GB VRAM limitations when textures are set too high.
  • Power Profile: This card is remarkably efficient with a 115W draw, making it a strong candidate for small builds where thermal management is difficult.
Radeon RX 9070
Productivity Analysis:

While this card handles high-resolution gaming with ease, its value as a workstation component depends on how it manages the friction of heavy project files and long-term stability. A GPU needs to remain consistent when memory usage climbs toward its limits during complex video editing or 3D scene construction. For a long time, hardware in this tier suffered from restrictive memory pools that acted as a hard wall for anyone working with high-resolution assets or multi-layered timelines. The 16GB buffer on the Radeon RX 9070 provides enough headroom to prevent the sudden slowdowns that occur when a system is forced to swap data to slower system RAM.

This capacity is not about luxury but about maintaining a fluid workflow when projects grow in complexity. When you are scrubbing through heavy footage or managing deep stacks of color grading, the 256-bit bus provides a wide enough path to keep the interface responsive. The architecture offers significant raw compute power that allows standard rendering tasks to finish with a speed that rivals previous enthusiast hardware. While certain professional software ecosystems still prioritize specialized proprietary drivers, the RDNA 4 architecture provides a stable and capable platform for creators who need a reliable machine for asset creation and local AI-assisted tools without the high entry cost of workstation-exclusive cards.

  • The inclusion of 16GB of VRAM allows for larger textures and more complex geometry in 3D workspaces without hitting a hardware ceiling.
  • Onboard AI accelerators speed up localized tasks such as noise reduction and automated masking in photography and video suites.
  • The high memory bandwidth of 644.6 GB/s ensures that uncompressed assets move through the pipeline without causing the micro-stuttering that interrupts a focused session.
  • Dedicated ray tracing cores can be used for hardware-accelerated rendering in compatible 3D software to reduce the time spent waiting for a frame to resolve.
  • Modern media engine support ensures that high-resolution exports are handled efficiently to minimize the strain on the rest of the system during the final phase of a project.

A power supply of 650W or higher provides the necessary overhead to keep the system stable during the sustained loads common in professional rendering. This card functions as a heavy lifting tool for independent freelancers and creators who require a large memory pool for texture-heavy environments but do not need expensive specialized enterprise support. It prioritizes practical headroom and raw speed, making it a functional choice for users who view their computer as a production tool. By choosing this hardware, you are investing in the stability of a high-capacity memory buffer that keeps the system running smoothly even as project requirements grow over time.

GeForce RTX 4060
Productivity Analysis:

While the gaming profile of the GeForce RTX 4060 highlights its efficiency, productivity tasks reveal more about how this hardware manages heavier data streams. The 8GB VRAM buffer serves as a definitive limit for creative projects, acting as a ceiling for 3D scene complexity and video timeline resolution. For beginners or hobbyists, this capacity is a functional starting point for learning 3D modeling or basic video editing. However, as projects grow in geometric density or texture size, the hardware will begin to show signs of strain. When memory limits are reached, the system may struggle to keep the interface responsive or fail to complete the task altogether because the physical memory simply cannot hold all the necessary assets at once.

The 128-bit memory bus is a relatively narrow path that restricts how quickly the card can process large textures or high-resolution video files. While the 272 GB/s bandwidth remains sufficient for static image work or standard video edits, users might notice friction when scrubbing through high-bitrate footage. A significant advantage here is the CUDA ecosystem, which provides a level of stability and software support that simplifies the creative workflow. Professional applications often have built-in optimizations for this architecture, helping to ensure that drivers and software communicate without frequent errors. The 24 Ray Tracing cores offer a clear benefit during the design phase, permitting faster lighting previews in the viewport so you can make adjustments without waiting for the CPU to catch up.

Productivity speed is often less about raw power and more about the specialized hardware blocks that handle specific calculations. The inclusion of the 8th Generation NVENC encoder with AV1 support is a major help for those who need to export video or broadcast their work without overloading the primary processor. This dedicated section of the chip manages the math of compression, allowing the 3072 CUDA cores to focus on the visual work in the viewport. The 15.1 TFLOPS of compute performance provides the necessary backing for modern AI tools, making features like neural filters or intelligent masking feel much more fluid and responsive than they would on older hardware generations.

  • VRAM Capacity: The 8GB limit requires careful management of high-resolution textures and serves as a natural boundary between hobbyist projects and professional-grade workloads.
  • CUDA Stability: This card benefits from a mature software ecosystem that prioritizes driver reliability, ensuring that the machine spends more time rendering and less time troubleshooting.
  • AV1 Support: The hardware encoder provides a modern path for video exports and broadcasting, maintaining high visual fidelity while using less data.
  • Neural Acceleration: Fourth-generation Tensor Cores drastically reduce the time needed for AI-assisted tasks, turning complex selections and mask generation into nearly instant actions.
  • Thermal Efficiency: A low 115W power draw allows for high-performance creative work in compact systems where managing heat would otherwise be a constant struggle.
Radeon RX 9070
Feature Analysis:

A power draw of 220W allows this card to operate within a thermal envelope that most mid-sized cases can manage without requiring an exotic fan setup or high-volume airflow solutions. This specific power profile sits in a comfortable middle ground where the heat output is predictable but still requires a well-ventilated chassis to maintain stable clock speeds during long sessions. Using two 8-pin power connectors ensures compatibility with a vast range of existing power supplies, removing the need for specialized adapters or the latest ATX 3.0 standards. While the manufacturer list specifies a 550W minimum, navigating the transient spikes and sustained loads of a modern gaming PC makes a 650W power supply a more practical foundation for long-term system health.

The 16GB of video memory provides a significant buffer against the increasing data weight of high-resolution textures and complex geometry in modern titles. This capacity ensures that the system can handle current and upcoming software without the stuttering that occurs when a GPU is forced to swap data to slower system memory. Utilizing a PCIe 5.0 x16 interface offers a massive amount of potential bandwidth, though its real-world impact is most noticeable when paired with a motherboard that supports the same generation. On older platforms, the full x16 lane width helps mitigate the performance loss that often plagues cards with more restricted lane counts, keeping the communication between the processor and the graphics hardware consistent.

  • Standard 8-pin connectors avoid the cable management friction associated with newer, stiffer power designs and fit easily into standard cable routing paths.
  • Building with 16GB of VRAM offers enough headroom for 4K textures and heavy modding scenes that would otherwise choke hardware with smaller memory pools.
  • The 220W thermal design is manageable for standard air-cooled builds provided the case has at least two or three intake fans to circulate fresh air.
  • Full x16 lane support ensures the card maintains high data transfer rates even when installed on older PCIe 3.0 or 4.0 motherboards.
  • A 650W power supply provides the necessary electrical overhead to absorb sudden power fluctuations without risking a system shutdown or hardware instability.

Choosing this hardware is a decision based on practical longevity and a lack of unnecessary building hurdles. The card provides a high memory ceiling that protects the user from the necessity of an upgrade when the next wave of unoptimized software arrives. It is a predictable piece of silicon that does not demand a total system overhaul, working effectively with reliable power standards and standard cooling configurations. By prioritizing a wide memory bus and a generous VRAM capacity, the build avoids the most common bottlenecks that usually end the useful life of a mid-tier graphics card. It serves as a stable anchor for a high-performance machine that values functional headroom over experimental features.

GeForce RTX 4060
Feature Analysis:

The 115W TDP of the GeForce RTX 4060 provides a massive advantage for builders working with compact cases or limited airflow because it generates very little waste heat during extended sessions. This thermal efficiency means you can focus less on aggressive case cooling and more on a quiet system profile, as the hardware does not demand the massive heatsinks or high fan speeds common in higher tiers. Because it draws so little power, it serves as a straightforward upgrade path for older pre-built machines that may have restrictive internal layouts or modest power delivery systems.

A technical consideration that often goes overlooked is the PCIe 4.0 x8 interface, which can lead to measurable friction when installed in older motherboards limited to PCIe 3.0 speeds. While the Ada Lovelace architecture utilizes a large L2 cache to mitigate some of the pressure on the 128-bit memory bus, this buffer primarily helps at 1080p and begins to lose effectiveness as you push toward higher resolutions. When the cache is saturated by heavy assets, the card must rely on its physical memory bandwidth, which can lead to inconsistent frame delivery and stuttering. This makes the card a specialized choice for high-refresh 1080p setups rather than a general-purpose tool meant for several years of resolution growth.

The physical installation process is simplified by the power requirements, though it does utilize a 12-pin connector that may require careful routing depending on your specific power supply model. Ensuring the cable is seated properly without excessive tension is a standard part of the build process for this generation of hardware. While the silicon itself is efficient and easy to manage, the 8GB VRAM capacity remains a fixed hardware ceiling that defines how you interact with modern software and upcoming visual updates.

  • Power Supply Requirements: While the base specification suggests a 300W unit, pairing this card with a 400W power supply ensures you have enough headroom for transient spikes and peripheral loads without risking system instability.
  • Cable Management: The 12-pin power connector requires a thoughtful approach to cable hygiene to ensure the connection remains secure and the layout looks clean inside the chassis.
  • Platform Compatibility: Users on legacy PCIe 3.0 platforms should be aware that the x8 lane count might restrict data transfer speeds during heavy asset loading in modern titles.
  • VRAM Headroom: The 8.0 GB buffer is a firm boundary for texture settings, meaning users must be ready to make minor visual compromises as software requirements continue to climb.
  • Chassis Flexibility: Because the card produces minimal heat, it is an excellent candidate for small form factor builds where space for ventilation is at a premium.
Radeon RX 9070
Full Tech Specs:
Feature Specification
Name Radeon RX 9070
MSRP $549
Release Date 2025-03-06
Chipset Manufacturer AMD
Memory Size 16 GB
Memory Type GDDR6
Memory Bus 256 bit
Memory Clock 2518 MHz
Memory Bandwidth 644.6 GB/s
Base Clock 1330 MHz
Boost Clock 2520 MHz
Shading Units 3584
Ray Tracing Cores 56
TMUs 224
ROPs 128
Pixel Rate 322.6 GPixel/s
Texture Rate 564.5 GTexel/s
Compute Power (FP16) 72.3 TFLOPS
Compute Power (FP32) 36.1 TFLOPS
Compute Power (FP64) 1.1 TFLOPS
Architecture RDNA 4.0
Process Size 4 nm
Interface PCIe 5.0 x16
Power Connectors 2x 8-pin
TDP 220 W
Suggested PSU (Minimum) 650 W
GeForce RTX 4060
Full Tech Specs:
Feature Specification
Name GeForce RTX 4060
MSRP $299
Release Date 2023-05-18
Chipset Manufacturer NVIDIA
Memory Size 8 GB
Memory Type GDDR6
Memory Bus 128 bit
Memory Clock 2125 MHz
Memory Bandwidth 272.0 GB/s
Base Clock 1830 MHz
Boost Clock 2460 MHz
Shading Units 3072
Ray Tracing Cores 24
TMUs 96
ROPs 48
Pixel Rate 118.1 GPixel/s
Texture Rate 236.2 GTexel/s
Compute Power (FP16) 15.1 TFLOPS
Compute Power (FP32) 15.1 TFLOPS
Compute Power (FP64) 236.2 GFLOPS
Architecture Ada Lovelace
Process Size 5 nm
Interface PCIe 4.0 x8
Power Connectors 1x 12-pin
TDP 115 W
Suggested PSU 400 W

Final Verdict

Choosing the Radeon RX 9070 over the GeForce RTX 4060 changes the fundamental capabilities of a build. The Radeon RX 9070 arrived with a $549 MSRP, bringing 16GB of GDDR6 memory on a 256-bit bus, which provides vastly more breathing room for modern textures. By contrast, the GeForce RTX 4060 launched at a $299 MSRP with half that memory capacity and a narrower bus, limiting its usefulness in heavy multitasking or high-resolution scenarios. The hardware gap is massive, as the Radeon unit features RDNA 4.0 architecture and PCIe 5.0 support, ensuring it stays relevant as motherboard technology advances.

  • Memory Authority: With 16GB of VRAM, the Radeon card avoids the stuttering issues that plague 8GB cards when settings are cranked to the maximum.
  • Computational Muscle: The Radeon RX 9070 holds a significant lead in shading units and raw TFLOPS, leading to much smoother frame rates across various titles.
  • Ray Tracing Progress: Newer RT cores in the AMD card allow it to maintain a clear lead even in lighting-heavy scenes where older generations often struggled.
  • Efficiency and Power: While the GeForce RTX 4060 remains a champion of low power consumption and easy installation, the Radeon RX 9070 requires more robust power delivery via two 8-pin connectors to fuel its superior performance.

The Radeon RX 9070 represents a much higher class of hardware, offering a significant edge in both purely Raster-based gaming and complex lighting calculations. This card is built for enthusiasts who want to push their hardware without hitting a memory wall. Meanwhile, the GeForce RTX 4060 serves those who prioritize power efficiency and the entry-level ecosystem. The difference in memory bandwidth and raw compute power makes the Radeon option a far more durable longitudinal investment.

Buy Radeon RX 9070 if you want a card with a huge memory buffer that can handle the most demanding modern titles at high resolutions without compromising on texture quality.

Buy GeForce RTX 4060 if you are building in a small case with limited cooling and prefer a low-power solution that stays within a strict initial budget.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.