Radeon RX 9070 vs Intel Arc B570

Winner:
Radeon RX 9070
Main Difference:
16GB VRAM and PCIe 5.0 vs 10GB and PCIe 4.0 bandwidth
Page Summary:
Radeon RX 9070 wins by delivering significantly higher memory bandwidth and double the ray tracing hardware to maintain smooth gameplay for modern titles.
Last updated:
January 31, 2026

The Essentials

Radeon RX 9070

MSRP:
$549
See Current Price
Spec Sheet:
Core Count:
3584
Thread Count:
Base Clock:
1330 MHz
Boost Clock:
2520 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
220 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2025-03-06
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
70
63.7
1440p
60.7
50.8
4K
42
42
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Intel Arc B570

MSRP:
$219
See Current Price
Spec Sheet:
Core Count:
2304
Thread Count:
Base Clock:
2500 MHz
Boost Clock:
2500 MHz
Integrated Graphics:
VRAM:
10.0 GB
L3 Cache:
10.0 GB
TDP:
150 W
Socket:
160 bit
Bus Width:
160 bit
Release Date:
2025-01-16
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
30.3
30.3
1440p
24.7
23.9
4K
15.3
9.6
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

Radeon RX 9070
Gaming Analysis:

The Radeon RX 9070 handles high-resolution gaming with a focus on raw speed and texture overhead. While it finds its natural footing at 1440p, the architecture has enough headroom to make 4K gaming a viable reality for those willing to use upscaling in the most demanding environments. In standard rasterized titles, the experience is smooth and responsive, matching the fluid motion once reserved for previous flagship-tier hardware. Increasing the resolution to 4K pushes the silicon harder, but the card maintains stability without the abrupt performance drops that often affect mid-tier options.

A 16GB VRAM buffer serves as a high ceiling for modern texture demands, offering a layer of security that 12GB cards lack. This capacity allows you to push texture settings to their maximum without worrying about the stuttering or hitching that happens when video memory is exhausted. The 256-bit memory bus ensures that these large data sets move quickly, keeping the frame delivery consistent during fast camera pans in open-world games. It is a configuration designed to keep visuals sharp and movement steady across heavy assets and massive environments alike.

  • Ray tracing performance on this architecture is more capable than previous generations, though it still benefits from a balanced approach in the most intensive titles.
  • The hardware manages moderate lighting and reflection effects well, keeping the action fluid without requiring you to disable these features entirely.
  • Onboard AI accelerators support upscaling technology to clean up edges and stabilize the image when pushing for higher resolutions.
  • Lower resolutions are handled with such ease that the card becomes an excellent choice for high-refresh competitive displays where input lag must be minimized.

Choosing this card means prioritizing consistent frame delivery and high texture quality over the most advanced lighting techniques. The 16GB of memory ensures the GPU will not be throttled by growing asset sizes in the coming years, making it a reliable choice for gamers who want uncompressed visuals. It functions as a heavy-duty option that focuses on keeping gameplay fluid and textures crisp, even if the heaviest path-tracing workloads still require a compromise in settings.

Intel Arc B570
Gaming Analysis:

The Intel Arc B570 delivers strong results as a high-value choice for standard resolutions, though it can manage higher pixel counts if you are willing to adjust expectations. It is not meant for heavy workloads at 4K where performance drops off significantly. At 1080p, the experience is fluid and consistent across modern releases, representing a serious step up in performance for its class. While the Xe2-HPG architecture is more refined than previous efforts, you still need to be aware that Intel hardware relies heavily on steady driver updates to stay competitive.

The 10GB VRAM configuration serves as a capable middle ground between cramped budget options and high-end enthusiast cards. This extra memory headroom helps prevent the stuttering and hitching that often occur when 8GB cards run out of space for textures. With a 160-bit memory bus, the card maintains enough bandwidth to handle fast motion without the underlying data pipeline becoming a bottleneck. You likely will not have to drop down to lower texture settings just to keep the image stable during intense scenes.

Ray tracing performance is a standout trait for any card at this MSRP, though you should keep your settings realistic. The dedicated ray tracing cores within the Battlemage architecture handle lighting calculations with more efficiency than typical entry-level hardware, often competing comfortably with standard industry alternatives in heavy lighting scenarios. Reflections and shadows appear more natural without making the game feel sluggish. At 1440p, the demand of these effects grows, making XeSS upscaling a helpful tool for keeping the visuals smooth and responsive.

  • Standard resolution gaming is excellent, frequently rivaling more expensive hardware.
  • Higher resolutions are reachable but usually require upscaling or lower presets to maintain a steady feel.
  • The Xe2-HPG architecture shows strong compatibility with modern DirectX 12 and Vulkan APIs.
  • Legacy DirectX 11 software may occasionally experience uneven frame delivery as drivers manage the CPU overhead.
  • The 10GB of GDDR6 memory avoids the texture popping or visual glitches common on 8GB cards.
  • Intel XeSS 2 provides significant fluidity improvements through frame generation technology.
  • A power supply of at least 550W is recommended to ensure the system remains stable under heavy gaming loads.
Radeon RX 9070
Productivity Analysis:

While this card handles high-resolution gaming with ease, its value as a workstation component depends on how it manages the friction of heavy project files and long-term stability. A GPU needs to remain consistent when memory usage climbs toward its limits during complex video editing or 3D scene construction. For a long time, hardware in this tier suffered from restrictive memory pools that acted as a hard wall for anyone working with high-resolution assets or multi-layered timelines. The 16GB buffer on the Radeon RX 9070 provides enough headroom to prevent the sudden slowdowns that occur when a system is forced to swap data to slower system RAM.

This capacity is not about luxury but about maintaining a fluid workflow when projects grow in complexity. When you are scrubbing through heavy footage or managing deep stacks of color grading, the 256-bit bus provides a wide enough path to keep the interface responsive. The architecture offers significant raw compute power that allows standard rendering tasks to finish with a speed that rivals previous enthusiast hardware. While certain professional software ecosystems still prioritize specialized proprietary drivers, the RDNA 4 architecture provides a stable and capable platform for creators who need a reliable machine for asset creation and local AI-assisted tools without the high entry cost of workstation-exclusive cards.

  • The inclusion of 16GB of VRAM allows for larger textures and more complex geometry in 3D workspaces without hitting a hardware ceiling.
  • Onboard AI accelerators speed up localized tasks such as noise reduction and automated masking in photography and video suites.
  • The high memory bandwidth of 644.6 GB/s ensures that uncompressed assets move through the pipeline without causing the micro-stuttering that interrupts a focused session.
  • Dedicated ray tracing cores can be used for hardware-accelerated rendering in compatible 3D software to reduce the time spent waiting for a frame to resolve.
  • Modern media engine support ensures that high-resolution exports are handled efficiently to minimize the strain on the rest of the system during the final phase of a project.

A power supply of 650W or higher provides the necessary overhead to keep the system stable during the sustained loads common in professional rendering. This card functions as a heavy lifting tool for independent freelancers and creators who require a large memory pool for texture-heavy environments but do not need expensive specialized enterprise support. It prioritizes practical headroom and raw speed, making it a functional choice for users who view their computer as a production tool. By choosing this hardware, you are investing in the stability of a high-capacity memory buffer that keeps the system running smoothly even as project requirements grow over time.

Intel Arc B570
Productivity Analysis:

While the hardware handles gaming with ease, the Intel Arc B570 offers a different experience when you move into professional software where stability and driver maturity take center stage. This card provides the hardware muscle for creative tasks, but the software side remains in a state of ongoing development. You can ignore occasional friction in a match, but a crash during a long render is much harder to overlook. The Xe2-HPG architecture is built for modern standards, yet anyone using this for work must accept that Intel is still refining the software support required for a perfectly fluid professional workflow.

The 10GB VRAM buffer offers a helpful middle ground compared to the more common 8GB found on many entry-level cards. This extra space prevents the immediate slowdowns that happen when a video timeline or a 3D scene exceeds the memory of the card. With a 160-bit memory bus and 380 GB/s of bandwidth, scrubbing through high-resolution footage feels responsive rather than sticky or sluggish. If you push into massive 3D environments with heavy textures, you will eventually reach a limit where the system begins to struggle, but for standard 1440p projects, the ceiling is comfortable. It provides just enough breathing room to keep your focus on the work instead of managing hardware limits.

Intel includes a capable media engine featuring hardware support for modern standards like AV1 and VVC. This allows the GPU to process heavy exports and high-bitrate broadcasts without placing the entire load on your CPU. It handles complex chroma subsampling that often causes issues for older hardware, making it a strong choice for video editors working with modern camera files. You lose the specific software optimizations found in the CUDA ecosystem, which can be a hurdle if your specific tools are built around that industry standard. However, the raw compute performance and XMX engines make it a credible contender for AI-assisted tools like noise reduction and automated masking in common editing suites.

  • The 10GB of VRAM provides a small but helpful safety margin for complex timelines and higher-resolution texture work.
  • Hardware support for VVC and AV1 makes the card a strong choice for modern video encoding and archival tasks.
  • High memory bandwidth ensures that navigating through uncompressed media files remains smooth and predictable.
  • The 550W power supply requirement ensures the system has enough headroom for stability during the long hours of a heavy render.
  • Dedicated XMX engines provide a significant boost for localized AI tasks like upscaling and smart masking in creative applications.
Radeon RX 9070
Feature Analysis:

A power draw of 220W allows this card to operate within a thermal envelope that most mid-sized cases can manage without requiring an exotic fan setup or high-volume airflow solutions. This specific power profile sits in a comfortable middle ground where the heat output is predictable but still requires a well-ventilated chassis to maintain stable clock speeds during long sessions. Using two 8-pin power connectors ensures compatibility with a vast range of existing power supplies, removing the need for specialized adapters or the latest ATX 3.0 standards. While the manufacturer list specifies a 550W minimum, navigating the transient spikes and sustained loads of a modern gaming PC makes a 650W power supply a more practical foundation for long-term system health.

The 16GB of video memory provides a significant buffer against the increasing data weight of high-resolution textures and complex geometry in modern titles. This capacity ensures that the system can handle current and upcoming software without the stuttering that occurs when a GPU is forced to swap data to slower system memory. Utilizing a PCIe 5.0 x16 interface offers a massive amount of potential bandwidth, though its real-world impact is most noticeable when paired with a motherboard that supports the same generation. On older platforms, the full x16 lane width helps mitigate the performance loss that often plagues cards with more restricted lane counts, keeping the communication between the processor and the graphics hardware consistent.

  • Standard 8-pin connectors avoid the cable management friction associated with newer, stiffer power designs and fit easily into standard cable routing paths.
  • Building with 16GB of VRAM offers enough headroom for 4K textures and heavy modding scenes that would otherwise choke hardware with smaller memory pools.
  • The 220W thermal design is manageable for standard air-cooled builds provided the case has at least two or three intake fans to circulate fresh air.
  • Full x16 lane support ensures the card maintains high data transfer rates even when installed on older PCIe 3.0 or 4.0 motherboards.
  • A 650W power supply provides the necessary electrical overhead to absorb sudden power fluctuations without risking a system shutdown or hardware instability.

Choosing this hardware is a decision based on practical longevity and a lack of unnecessary building hurdles. The card provides a high memory ceiling that protects the user from the necessity of an upgrade when the next wave of unoptimized software arrives. It is a predictable piece of silicon that does not demand a total system overhaul, working effectively with reliable power standards and standard cooling configurations. By prioritizing a wide memory bus and a generous VRAM capacity, the build avoids the most common bottlenecks that usually end the useful life of a mid-tier graphics card. It serves as a stable anchor for a high-performance machine that values functional headroom over experimental features.

Intel Arc B570
Feature Analysis:

A typical thermal design power of 150W makes the Intel Arc B570 relatively simple to cool, though build stability depends on more than just the temperature of the chip. While the base specification suggests a 450W power supply, aiming for a 550W unit provides a necessary buffer for transient power spikes and system wide efficiency. Running a power supply too close to its maximum capacity often leads to increased fan noise and unnecessary heat buildup within the case. Maintaining this overhead ensures your internal components receive clean power during the rapid fluctuations of modern gaming and creative software.

The PCIe 4.0 x8 interface presents a specific consideration for anyone installing this card into an older motherboard. Because it utilizes half the physical lanes of a full x16 slot, users on PCIe 3.0 platforms will effectively operate with reduced bandwidth. This limitation rarely causes issues in every title, but it can lead to inconsistent frame delivery or stuttering in games that aggressively move data between the system memory and the 10GB of VRAM. You should also verify that your system supports Resizable BAR, as this specific Intel architecture relies on that feature to function at its intended performance level.

You can avoid the complexities of modern high end power standards because this card relies on a single 8-pin connector. There is no requirement for specialized adapters or the stiffer cables associated with newer power specifications, which helps keeps cable management straightforward and reliable. The 10GB of GDDR6 memory sits on a 160-bit bus, providing a total of 380 GB/s bandwidth to keep textures loading smoothly at 1080p and 1440p. While you are adopting a newer software ecosystem that is still maturing, the hardware itself follows a traditional and user friendly installation path that fits easily into most standard mid sized cases.

  • The 150W power draw helps maintain a quiet system environment by putting less cooling pressure on your case fans.
  • A standard 8-pin power connector ensures compatibility with most existing power supplies without needing extra adapters.
  • Using a 550W power supply provides the stability needed to handle the momentary power fluctuations common in the Xe2-HPG architecture.
  • The 10GB VRAM configuration offers a meaningful safety margin over older 8GB cards when playing open world games with high resolution textures.
  • Support for the VVC codec and AV1 encoding provides a future proof pathway for high quality video playback and streaming tasks.
Radeon RX 9070
Full Tech Specs:
Feature Specification
Name Radeon RX 9070
MSRP $549
Release Date 2025-03-06
Chipset Manufacturer AMD
Memory Size 16 GB
Memory Type GDDR6
Memory Bus 256 bit
Memory Clock 2518 MHz
Memory Bandwidth 644.6 GB/s
Base Clock 1330 MHz
Boost Clock 2520 MHz
Shading Units 3584
Ray Tracing Cores 56
TMUs 224
ROPs 128
Pixel Rate 322.6 GPixel/s
Texture Rate 564.5 GTexel/s
Compute Power (FP16) 72.3 TFLOPS
Compute Power (FP32) 36.1 TFLOPS
Compute Power (FP64) 1.1 TFLOPS
Architecture RDNA 4.0
Process Size 4 nm
Interface PCIe 5.0 x16
Power Connectors 2x 8-pin
TDP 220 W
Suggested PSU (Minimum) 650 W
Intel Arc B570
Full Tech Specs:
Feature Specification
Product Name Intel Arc B570
MSRP $219
Release Date 2025-01-16
Manufacturer Intel
Memory Size 10 GB
Memory Type GDDR6
Memory Bus 160 bit
Memory Clock 2375 MHz
Memory Bandwidth 380.0 GB/s
Base Clock 2500 MHz
Boost Clock 2500 MHz
Shading Units 2304
Ray Tracing Cores 18
TMUs 144
ROPs 80
Pixel Rate 200 GPixel/s
Texture Rate 360 GTexel/s
Compute Power (FP16) 23.0 TFLOPS
Compute Power (FP32) 11.5 TFLOPS
Compute Power (FP64) 1.4 TFLOPS
Architecture Xe2-HPG
Process Size 5 nm
Interface PCIe 4.0 x8
Power Connectors 1x 8-pin
TDP 150 W
Recommended PSU 550 W

Final Verdict

The Radeon RX 9070 represents a massive step up in raw hardware capability over the Intel Arc B570. Its $549 MSRP positions it in a different performance tier entirely compared to the $219 MSRP of the budget Intel part. With a 256-bit memory bus providing massive bandwidth and 16GB of GDDR6 memory, the Radeon card avoids the texture swapping issues that often plague cards with smaller buffers. This architectural lead is further extended by its 56 Ray Tracing cores which offer a clear lead in heavy lighting workloads over the 18 cores found on the competitor. The RDNA 4 architecture provides a significant edge in thermal efficiency and power management for high-demand tasks.

Intel Arc B570 remains an interesting choice for those concerned with entry-level spending but it struggles to bridge the performance gap due to its narrower 160-bit bus and PCIe 4.0 x8 interface. While it supports modern media codecs like VVC, it lacks the raw shading horsepower to keep pace when settings are pushed to the limit. The Radeon RX 9070 also benefits from a full PCIe 5.0 x16 connection which ensures maximum communication speed with modern motherboards. Reliability is a major factor here because the mature driver stack on the Radeon side usually translates to a smoother experience in a wider variety of software environments and engines. It is simply a more powerful and versatile piece of hardware for anyone who wants their PC to handle new releases without compromise.

  • Buy Radeon RX 9070 if you want 16GB VRAM for longevity and enough ray tracing power to handle demanding visual settings.
  • Buy Intel Arc B570 if the $219 MSRP is your hard limit and you only need a basic solution for light gaming.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.