Radeon RX 9070 vs Radeon RX 7900 GRE

Winner:
Radeon RX 9070
Main Difference:
Newer RDNA 4 architecture with PCIe 5.0 support and better ray tracing efficiency.
Page Summary:
Radeon RX 9070 wins by offering a more efficient architecture and modern feature set, including RDNA 4 enhancements and improved ray tracing performance over the older model. While both cards share a launch MSRP of $549, the newer card provides better longevity and efficiency for high-end builds.
Last updated:
January 31, 2026

The Essentials

Radeon RX 9070

MSRP:
$549
See Current Price
Spec Sheet:
Core Count:
3584
Thread Count:
Base Clock:
1330 MHz
Boost Clock:
2520 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
220 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2025-03-06
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
70
63.7
1440p
60.7
50.8
4K
42
42
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity

Radeon RX 7900 GRE

MSRP:
$549
See Current Price
Spec Sheet:
Core Count:
5120
Thread Count:
Base Clock:
1287 MHz
Boost Clock:
2245 MHz
Integrated Graphics:
VRAM:
16.0 GB
L3 Cache:
16.0 GB
TDP:
260 W
Socket:
256 bit
Bus Width:
256 bit
Release Date:
2023-07-27
Gaming Scores:
(Higher is better)
Resolution
Rasterization
Ray Tracing
1080p
62.5
51.5
1440p
54.2
40.4
4K
43.1
32.5
Gaming and Productivity Scores:
(Higher is better)
Gaming
Productivity
Note about scores:
We measure this card's performance against the absolute best GPU currently available. The numbers show the percentage of performance you get compared to the market leader at 1080p, 1440p, and 4K resolutions, with the leader at 100. These scores are aggregated from a wide range of different games to create a reliable average. However, keep in mind that performance in specific titles may deviate from this average depending on how that game is optimized.
Note about scores:
We measure this processor's performance against the absolute best CPU currently available. The numbers show the percentage of performance you get compared to the market leader in both gaming and workstation tasks, with the leader at 100. These scores are aggregated from a wide range of different games and applications to create a reliable average. However, keep in mind that performance in specific software may deviate from this average depending on how that program is optimized.

Performance Deep Dive

Radeon RX 9070
Gaming Analysis:

The Radeon RX 9070 handles high-resolution gaming with a focus on raw speed and texture overhead. While it finds its natural footing at 1440p, the architecture has enough headroom to make 4K gaming a viable reality for those willing to use upscaling in the most demanding environments. In standard rasterized titles, the experience is smooth and responsive, matching the fluid motion once reserved for previous flagship-tier hardware. Increasing the resolution to 4K pushes the silicon harder, but the card maintains stability without the abrupt performance drops that often affect mid-tier options.

A 16GB VRAM buffer serves as a high ceiling for modern texture demands, offering a layer of security that 12GB cards lack. This capacity allows you to push texture settings to their maximum without worrying about the stuttering or hitching that happens when video memory is exhausted. The 256-bit memory bus ensures that these large data sets move quickly, keeping the frame delivery consistent during fast camera pans in open-world games. It is a configuration designed to keep visuals sharp and movement steady across heavy assets and massive environments alike.

  • Ray tracing performance on this architecture is more capable than previous generations, though it still benefits from a balanced approach in the most intensive titles.
  • The hardware manages moderate lighting and reflection effects well, keeping the action fluid without requiring you to disable these features entirely.
  • Onboard AI accelerators support upscaling technology to clean up edges and stabilize the image when pushing for higher resolutions.
  • Lower resolutions are handled with such ease that the card becomes an excellent choice for high-refresh competitive displays where input lag must be minimized.

Choosing this card means prioritizing consistent frame delivery and high texture quality over the most advanced lighting techniques. The 16GB of memory ensures the GPU will not be throttled by growing asset sizes in the coming years, making it a reliable choice for gamers who want uncompressed visuals. It functions as a heavy-duty option that focuses on keeping gameplay fluid and textures crisp, even if the heaviest path-tracing workloads still require a compromise in settings.

Radeon RX 7900 GRE
Gaming Analysis:

The Radeon RX 7900 GRE is a high-performance contender that fits into the upper-tier of gaming hardware, offering a massive leap over entry-level parts. Built on the RDNA 3.0 architecture, it provides enough raw power to handle extremely high visual settings at 1440p and can stretch into higher resolutions if you manage your expectations regarding total frame output. It behaves as a balanced middle ground in the lineup, delivering smooth motion in standard gaming without the heat or power demands found in the heaviest flagship silicon.

The 16GB GDDR6 memory buffer is a practical advantage for modern gaming. Many modern titles are increasingly hungry for video memory, and this 16GB ceiling allows you to keep texture quality at maximum without the stuttering or blurry asset loading that can happen on cards with less capacity. This buffer provides significant longevity against the demanding requirements of visual-heavy console ports and complex open-world environments.

  • Standard Gaming (Rasterization): This is where the card is most comfortable. It produces fluid movement across almost any modern title at 1440p. While it can handle 4K, the 256-bit memory bus means performance might tighten in extremely dense scenes compared to larger enthusiast cards.
  • Ray Tracing Performance: With 80 Ray Accelerators, the hardware can handle ray-traced lighting effects, though it remains more demanding than standard rendering. In titles with lighter ray tracing implementations, the visuals remain sharp and playable, but for heavy lighting loads, you will likely need to engage upscaling tools to maintain a steady feel.
  • Upscaling and Frame Generation: You have access to FSR 3 and driver-level Fluid Motion Frames. These features are great for bridging the gap during heavy 4K workloads or when you want the highest possible visual fluidity in fast-paced titles.
  • Memory Tuning: One interesting trait of this card is the ability to adjust memory timings through software. For those comfortable with basic tuning, there is room to tighten up performance and gain a small edge in responsiveness.

The 750W power supply recommendation ensures the card has plenty of headroom for its 2245 MHz boost clock during intense gaming sessions. It is a sensible choice for a build centered on high fidelity and a generous memory overhead, offering a path to enthusiast-level gaming without demanding a specialized high-wattage power environment or a massive chassis. At a launch MSRP of $549, it represents a sturdy investment for high-refresh 1440p setups.

Radeon RX 9070
Productivity Analysis:

While this card handles high-resolution gaming with ease, its value as a workstation component depends on how it manages the friction of heavy project files and long-term stability. A GPU needs to remain consistent when memory usage climbs toward its limits during complex video editing or 3D scene construction. For a long time, hardware in this tier suffered from restrictive memory pools that acted as a hard wall for anyone working with high-resolution assets or multi-layered timelines. The 16GB buffer on the Radeon RX 9070 provides enough headroom to prevent the sudden slowdowns that occur when a system is forced to swap data to slower system RAM.

This capacity is not about luxury but about maintaining a fluid workflow when projects grow in complexity. When you are scrubbing through heavy footage or managing deep stacks of color grading, the 256-bit bus provides a wide enough path to keep the interface responsive. The architecture offers significant raw compute power that allows standard rendering tasks to finish with a speed that rivals previous enthusiast hardware. While certain professional software ecosystems still prioritize specialized proprietary drivers, the RDNA 4 architecture provides a stable and capable platform for creators who need a reliable machine for asset creation and local AI-assisted tools without the high entry cost of workstation-exclusive cards.

  • The inclusion of 16GB of VRAM allows for larger textures and more complex geometry in 3D workspaces without hitting a hardware ceiling.
  • Onboard AI accelerators speed up localized tasks such as noise reduction and automated masking in photography and video suites.
  • The high memory bandwidth of 644.6 GB/s ensures that uncompressed assets move through the pipeline without causing the micro-stuttering that interrupts a focused session.
  • Dedicated ray tracing cores can be used for hardware-accelerated rendering in compatible 3D software to reduce the time spent waiting for a frame to resolve.
  • Modern media engine support ensures that high-resolution exports are handled efficiently to minimize the strain on the rest of the system during the final phase of a project.

A power supply of 650W or higher provides the necessary overhead to keep the system stable during the sustained loads common in professional rendering. This card functions as a heavy lifting tool for independent freelancers and creators who require a large memory pool for texture-heavy environments but do not need expensive specialized enterprise support. It prioritizes practical headroom and raw speed, making it a functional choice for users who view their computer as a production tool. By choosing this hardware, you are investing in the stability of a high-capacity memory buffer that keeps the system running smoothly even as project requirements grow over time.

Radeon RX 7900 GRE
Productivity Analysis:

While the hardware is designed to excel in high resolution gaming, its utility for professional tasks is defined by the heavy compute resources packed into its 80 processing units. Moving from gaming to creative work reveals a card that handles dense 3D viewports and complex timelines with steady composure. The RDNA 3.0 architecture provides a massive amount of raw mathematical power that helps maintain responsiveness in specialized software when you are manipulating heavy assets or managing a multi-monitor productivity setup.

The 16GB memory buffer serves as a critical safety net for anyone working with high-resolution textures or multi-layered video projects. Cards with smaller capacities might struggle the moment you load a secondary application or a large data set, but this overhead ensures the system does not immediately stall during an export or a heavy render. Having this much video memory creates a stable foundation for professional workflows that will remain relevant as software requirements continue to climb in the coming years.

  • Rendering and Simulation Performance: The 80 Ray Accelerators assist in hardware-accelerated rendering tasks within applications like Blender, though the specific software translation layer involves different optimization paths than competitors. While it provides excellent speed for traditional rendering, it relies on raw compute strength to power through complicated lighting calculations.
  • Memory Throughput and Bandwidth: With a 256-bit memory bus providing 576 GB/s of bandwidth, the card handles large data transfers with considerable speed. This allows for smooth scrubbing in video editing software where the GPU must quickly fetch and process frames from the buffer to keep up with your editing pace.
  • Precision Compute Tasks: The hardware offers 92 TFLOPS of FP16 performance, which is a major benefit for AI-assisted tools and image processing filters. This raw arithmetic capability allows the card to accelerate modern neural filters and generative tools even without specialized proprietary cores.
  • Modern Video Encoding: Inclusion of hardware AV1 encoding is a significant perk for video professionals and streamers alike. This allows you to produce high-quality exports with efficient file sizes, reducing the strain on your processor and speeding up the final delivery phase of a project.
  • Technical Software Compatibility: In certain engineering and CAD applications like SolidWorks, the architecture often demonstrates a surprising lead in visualization fluidity. It handles the specific viewport instructions of these tools more effectively than many consumer-grade alternatives, making it a viable choice for a dual-purpose workstation and gaming machine.

A 750W power supply is the recommended choice to provide enough energy for the card during heavy sustained workloads. Despite the massive compute potential, it operates efficiently without creating an overwhelming heat signature or excessive noise levels. At its launch MSRP of $549, it stands as a practical option for builders who need a high-end memory buffer and significant processing power for creative tasks without venturing into the extreme price tiers of flagship workstations.

Radeon RX 9070
Feature Analysis:

A power draw of 220W allows this card to operate within a thermal envelope that most mid-sized cases can manage without requiring an exotic fan setup or high-volume airflow solutions. This specific power profile sits in a comfortable middle ground where the heat output is predictable but still requires a well-ventilated chassis to maintain stable clock speeds during long sessions. Using two 8-pin power connectors ensures compatibility with a vast range of existing power supplies, removing the need for specialized adapters or the latest ATX 3.0 standards. While the manufacturer list specifies a 550W minimum, navigating the transient spikes and sustained loads of a modern gaming PC makes a 650W power supply a more practical foundation for long-term system health.

The 16GB of video memory provides a significant buffer against the increasing data weight of high-resolution textures and complex geometry in modern titles. This capacity ensures that the system can handle current and upcoming software without the stuttering that occurs when a GPU is forced to swap data to slower system memory. Utilizing a PCIe 5.0 x16 interface offers a massive amount of potential bandwidth, though its real-world impact is most noticeable when paired with a motherboard that supports the same generation. On older platforms, the full x16 lane width helps mitigate the performance loss that often plagues cards with more restricted lane counts, keeping the communication between the processor and the graphics hardware consistent.

  • Standard 8-pin connectors avoid the cable management friction associated with newer, stiffer power designs and fit easily into standard cable routing paths.
  • Building with 16GB of VRAM offers enough headroom for 4K textures and heavy modding scenes that would otherwise choke hardware with smaller memory pools.
  • The 220W thermal design is manageable for standard air-cooled builds provided the case has at least two or three intake fans to circulate fresh air.
  • Full x16 lane support ensures the card maintains high data transfer rates even when installed on older PCIe 3.0 or 4.0 motherboards.
  • A 650W power supply provides the necessary electrical overhead to absorb sudden power fluctuations without risking a system shutdown or hardware instability.

Choosing this hardware is a decision based on practical longevity and a lack of unnecessary building hurdles. The card provides a high memory ceiling that protects the user from the necessity of an upgrade when the next wave of unoptimized software arrives. It is a predictable piece of silicon that does not demand a total system overhaul, working effectively with reliable power standards and standard cooling configurations. By prioritizing a wide memory bus and a generous VRAM capacity, the build avoids the most common bottlenecks that usually end the useful life of a mid-tier graphics card. It serves as a stable anchor for a high-performance machine that values functional headroom over experimental features.

Radeon RX 7900 GRE
Feature Analysis:

A 260W typical power draw places this hardware in a practical sweet spot for builders who want high-tier performance without the excessive thermal output of flagship silicon. Since it uses two standard 8-pin power connectors, you can avoid the stiffness and clearance issues associated with newer high-density cables. This choice makes the installation process far more straightforward for those reusing an existing power supply or building in a compact chassis where cable management is often a struggle. While the base specification suggests a lower minimum, a 750W power supply is the target for a stable build to ensure the system handles power behavior during sudden visual transitions without hesitation.

The physical footprint and power requirements reflect a design that prioritizes compatibility across a wide range of mid-tower cases and motherboard generations. By utilizing a full PCIe 4.0 x16 interface, the card maintains its data throughput efficiency even if installed in an older PCIe 3.0 slot, preventing the bandwidth limitations found on cards with fewer lanes. This architectural stability ensures the hardware remains predictable and reliable over years of heavy use, rather than requiring a total system overhaul just to accommodate its presence. It is a dense, efficient package that focuses on the core requirements of high-resolution textures and thermal longevity.

  • Thermal Efficiency: The 260W TDP allows for manageable heat levels, ensuring your case fans do not have to run at maximum speeds to keep the internal environment stable.
  • Cable Compatibility: Using two 8-pin connectors means the card works with almost any standard power supply, eliminating the need for specialized adapters or specific ATX 3.0 hardware.
  • VRAM Insurance: A 16GB memory ceiling offers a significant buffer for heavy texture packs in modern titles, reducing the likelihood of stuttering as games become more asset-heavy.
  • Platform Longevity: The combination of RDNA 3.0 architecture and a full x16 interface provides a sturdy foundation that stays relevant as software requirements continue to evolve.
  • Installation Simplicity: The absence of experimental power standards and the manageable power draw make this a low-friction choice for both new builders and those looking for a plug-and-play upgrade.

Choosing this hardware means opting for a balance between raw capability and build-side convenience. You are getting a card that fills the gap for the builder who wants flagship-level visual assets and 1440p stability without the diminishing returns of higher wattage tiers. It avoids the complexities of specialized power management, resulting in a system that stays quiet and operates within safe thermal limits. The focus here is on a reliable experience that values long-term stability and physical compatibility above all else. It is a technical choice for someone who prefers a clean, predictable build over dealing with the heat and power requirements of the absolute top-tier silicon.

Radeon RX 9070
Full Tech Specs:
Feature Specification
Name Radeon RX 9070
MSRP $549
Release Date 2025-03-06
Chipset Manufacturer AMD
Memory Size 16 GB
Memory Type GDDR6
Memory Bus 256 bit
Memory Clock 2518 MHz
Memory Bandwidth 644.6 GB/s
Base Clock 1330 MHz
Boost Clock 2520 MHz
Shading Units 3584
Ray Tracing Cores 56
TMUs 224
ROPs 128
Pixel Rate 322.6 GPixel/s
Texture Rate 564.5 GTexel/s
Compute Power (FP16) 72.3 TFLOPS
Compute Power (FP32) 36.1 TFLOPS
Compute Power (FP64) 1.1 TFLOPS
Architecture RDNA 4.0
Process Size 4 nm
Interface PCIe 5.0 x16
Power Connectors 2x 8-pin
TDP 220 W
Suggested PSU (Minimum) 650 W
Radeon RX 7900 GRE
Full Tech Specs:
Feature Specification
Product Name Radeon RX 7900 GRE
MSRP $549
Release Date 2023-07-27
Chipset Manufacturer AMD
Memory Size 16 GB
Memory Type GDDR6
Memory Bus 256 bit
Memory Clock 2250 MHz
Memory Bandwidth 576.0 GB/s
Base Clock 1287 MHz
Boost Clock 2245 MHz
Shading Units 5120
Ray Tracing Cores 80
TMUs 320
ROPs 160
Pixel Rate 359.2 GPixel/s
Texture Rate 718.4 GTexel/s
Compute Power (FP16) 92.0 TFLOPS
Compute Power (FP32) 46.0 TFLOPS
Compute Power (FP64) 1.4 TFLOPS
Architecture RDNA 3.0
Process Size 5 nm
Interface PCIe 4.0 x16
Power Connectors 2x 8-pin
TDP 260 W
Suggested PSU 700 W

Final Verdict

Choosing between these two cards comes down to a battle between brute force and modern refinement. The Radeon RX 9070 represents a major shift toward architectural efficiency with its RDNA 4 foundation. While the Radeon RX 7900 GRE has a higher shading unit count, the RX 9070 closed that gap through significantly improved clock speeds and a more advanced 4nm process. The move to PCIe 5.0 support ensures that the newer card stays relevant in modern motherboards, offering a higher ceiling for data transfer that the older PCIe 4.0 standard cannot match. This architectural leap is not just about raw power but also about how that power is used to handle complex calculations. Ray tracing used to be a weak point for these cards, but the refined RT hardware in the RDNA 4 stack handles light and shadow with much better consistency than the previous generation. You get a card that runs cool and stays efficient while pushing heavy visual settings.

Memory performance also favors the newer card due to its higher memory bandwidth, which helps when loading massive textures in open world environments. Even though both cards feature 16GB of VRAM, the RX 9070 utilizes its memory more effectively thanks to broader bandwidth and improved cache management. This makes it a more reliable pick for users who want to keep their hardware for several years without worrying about compatibility with upcoming software updates or new upscaling features. The Radeon RX 7900 GRE remains a capable piece of hardware, but it lacks the specialized media engine improvements and AI acceleration found in its successor. For builders looking at a long-term investment at the $549 MSRP, the newer tech offers a more stable path forward.

  • Buy Radeon RX 9070 if you want the most efficient architecture available at this price point and need PCIe 5.0 support for a modern build.
  • Buy Radeon RX 7900 GRE if you specifically require the higher raw shading unit count and do not mind using an older RDNA 3 platform.

Not sure which part is right for you?

Every gamer is unique. Stop guessing and let our smart engine build a custom rig tailored exactly to your budget and the games you actually play.

Take the PCBuildQuiz!

A Note on Market Volatility

Our mission at PCBuildQuiz is to help you get maximum performance for every dollar by scanning for the best new retail prices 24/7. However, the hardware market can be unpredictable, and specific components like RAM or GPUs may experience temporary price spikes due to shortages. If a price seems unusually high, we recommend checking reputable used marketplaces or waiting for the volatility to settle because we would rather you save money than overpay for a brand new box.

Affiliate Disclaimer

Transparency is key. Some links on this page are affiliate links. This means if you click through and make a purchase, we may earn a small commission at no extra cost to you. This supports our servers and keeps our build engine free for everyone.